
Tribhuvan University
Institute of Science and Technology

A Comparative Evaluation of Buffer Replacement
Algorithms LIRS-WSR and CCF-LRU for Flash

Memory Based Systems

Dissertation
Submitted to

Central Department of Computer Science & Information Technology
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Masters Degree in Computer Science & Information Technology

By
Mahesh Kumar Yadav

Date: April 2, 2017

Tribhuvan University
Institute of Science and Technology

A Comparative Evaluation of Buffer Replacement
Algorithms LIRS-WSR and CCF-LRU for Flash

Memory Based Systems

Dissertation
Submitted to

Central Department of Computer Science & Information Technology
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Masters Degree in Computer Science & Information Technology

By
Mahesh Kumar Yadav

Date: April 2, 2017

Supervisor
Prof. Dr. Subarna Shakya

Co-Supervisor
Mr. Arjun Singh Saud

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science & Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed
here have been used in this work.

...
Mahesh Kumar Yadav
contact@maheshyadav.com.np
Date: April 2, 2017

Supervisor’s Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. Mahesh
Kumar Yadav entitled “A Comparative Evaluation of Buffer Replacement Algorithms
LIRS-WSR and CCF-LRU for Flash Memory Based Systems” in partial fulfillment of the
requirements for the degree of M.Sc. in Computer Science and Information Technology be
processed for the evaluation.

...
Prof. Dr. Subarna Shakya
Department of Electronics and Computer Engineering (DOECE), Pulchowk Campus,
Institute of Engineering (IOE), Tribhuvan University (TU),
Pulchowk, Lalitpur, Nepal

Date: April 2, 2017

mailto:contact@maheshyadav.com.np

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science & Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion, it is satisfactory in the scope
and quality as a dissertation in the partial fulfillment of the requirement of Masters Degree in
Computer Science and Information Technology.

Evaluation Committee

... ...
Mr. Nawaraj Paudel Prof. Dr. Subarna Shakya

CDCSIT, TU DOECE, Pulchowk Campus, IOE, TU
Kirtipur, Kathmandu, Nepal Pulchowk, Lalitpur, Nepal

(Head) (Supervisor)

... ...
Asst. Prof. Dr. Arun K. Timalsina Mr. Jagdish Bhatta

DOECE, Pulchowk Campus, IOE, TU CDCSIT, TU
Pulchowk, Lalitpur, Nepal Kirtipur, Kathmandu, Nepal

(External Examiner) (Internal Examiner)

Date: April 13, 2017

ACKNOWLEDGEMENTS

I am very happy to complete this dissertation “A Comparative Evaluation of Buffer Re-

placement Algorithms LIRS-WSR and CCF-LRU for Flash Memory Based Systems”.

This research work has been performed under Central Department of Computer Science and

Information Technology (CDCSIT), Tribhuvan University (TU), Kirtipur. I am very grateful to

my department for giving me an enthusiastic support.

First of all, I would like to express my gratitude to my supervisor Prof. Dr. Subarna Shakya,

Institute of Engineering (IOE), Pulchowk, you have been a tremendous mentor for me. This

research would not have been possible without his advice and patience. I deeply extend my

hearty acknowledgement to my co-supervisor Mr. Arjun Singh Saud who gave me an enthu-

siastic support from the beginning to the end of the preparation of this dissertation. He is the

one who listened to all my problems I faced during this dissertation and showed me the way

to overcome them. Most importantly I would like to thank respected Head of Department of

CDCSIT. My sincere thanks also goes to all the respected teachers Prof. Dr. Shashidharram

Joshi, Prof. Sudarshan Karanjit, Mr. Min Bahadur Khati, Mr. Bishnu Gautam, Mr. Jagdish

Bhatta, Mr. Dheeraj Kedar Pandey, Mr. Sarbin Sayami, Mrs. Lalita Sthapit, Mr. Yog Raj

Joshi, and Mr. Bikash Balami of CDCSIT, TU for providing me such a broad knowledge and

inspirations. Special thanks to my family: my parents Gena Ray Yadav and Sugandhi Devi,

and to my brothers. Words cannot express how grateful I am to father and brothers for all of

the sacrifices that they’ve made on my behalf.

I have done my best to complete this research work. Suggestions from the readers are always

welcomed, which will improve this work.

Last and not least: I beg forgiveness of all those who have been with me over the course of the

years and whose names I have failed to mention.

i

ABSTRACT

Flash memory has the characteristics of not-in-place update and asymmetric Input/output (I/O)

costs among read, write, and erase operations, in which the cost of write/erase operations is

much higher than that of read operation. Among different flash-aware buffer replacement

algorithms Low Inter-reference Recency Set Write Sequence Reordering (LIRS-WSR) and

Cold Clean First Least Recently Used (CCF-LRU) are two buffer replacement policies that

can be suitable for flash-based systems. LIRS-WSR enhances Low Inter-reference Recency

Set (LIRS) by reordering the writes of not-cold-dirty pages from the buffer cache to flash stor-

age to focus on the reduction of the number of write/erase operations as well as preventing se-

rious degradation of buffer hit ratio. CCF-LRU, which enhances the previous Clean First Least

Recently Used (CF-LRU) and Least Recently Used Write Sequence Reordering (LRU-WSR)

methods by differentiating clean pages into cold and hot ones, and evicting cold clean pages

first and delaying the eviction of hot clean pages. The objective of this dissertation is mainly

focused on evaluating the performance of LIRS-WSR and CCF-LRU buffer replacement algo-

rithms. Finally, the comparative analysis based on quantitative analysis of those algorithms is

performed based on the hit/miss rates and the number write counts.

Using the trace-driven simulation, when workload has high reference locality, LIRS-WSR has

significantly superior performance than CCF-LRU in terms of both hit rate and write count.

LIRS-WSR has higher hit rate up to 17.5% and minimizes write count up to 37.17% in com-

parison to CCF-LRU. For uniformly distributed workloads, the difference in hit rates, and

write count of LIRS-WSR and CCF-LRU is comparatively small. LIRS-WSR outperforms

CCF-LRU by increasing hit rate up to 3.8% and decreasing write count up to 9.23% in com-

parison to CCF-LRU in its worst case.

Keywords:

CCF-LRU, Flash memory, Hit Rate, LIRS, LIRS-WSR, Write Count

ii

TABLE OF CONTENTS

Acknowledgement i

Abstract ii

Table of Contents iii

List of Figures vii

List of Tables ix

List of Algorithms x

Abbreviations xi

1 BACKGROUND AND INTRODUCTION 1

1.1 Background . 1

1.1.1 Flash Memory . 1

1.1.2 Performance Metrics . 3

1.1.2.1 Page Fault Counts . 3

1.1.2.2 Hit/Miss Rate . 3

1.1.2.3 Write Counts . 4

1.1.3 Program behavior . 4

1.1.3.1 Locality of Reference . 4

1.1.3.2 Memory Reference Patterns 5

1.1.3.2.1 Random Traces 5

1.1.3.2.2 Write-most Traces 5

1.1.3.2.3 Read-most Traces 5

1.1.3.2.4 Zipf Traces . 5

1.2 Introduction . 5

iii

1.2.1 Problem Definition . 5

1.2.2 Objectives . 6

1.2.3 Motivation . 6

1.3 Dissertation Organization . 7

2 LITERATURE REVIEW 8

2.1 Traditional Buffer Replacement Algorithms 8

2.1.1 OPT or MIN Page Replacement Algorithm 8

2.1.2 LRU Based Page Replacement . 8

2.1.2.1 FIFO Page Replacement Algorithm 8

2.1.2.2 LRU Page Replacement Algorithm 9

2.1.2.3 NRU Page Replacement Algorithm 9

2.1.2.4 LFU Page Replacement Algorithm 10

2.1.2.5 EELRU Page Replacement Algorithm 10

2.1.2.6 LRFU Page Replacement Algorithm 11

2.1.2.7 LRU-K Page Replacement Algorithm 11

2.1.2.8 2Q Page Replacement Algorithm 12

2.1.2.9 LIRS Page Replacement Algorithm 12

2.1.2.10 ARC Page Replacement Algorithm 12

2.1.3 CLOCK Based Page Replacement Algorithm 13

2.1.3.1 CLOCK Page Replacement Algorithm 13

2.1.3.2 Clock-Pro . 14

2.1.3.3 CAR Page Replacement Algorithm 14

2.1.3.4 GCLOCK Page Replacement Algorithm 15

2.2 Buffer Replacement Algorithms for Flash-Based Systems 15

2.2.1 CF-LRU . 15

2.2.2 CFDC . 16

2.2.3 LRU-WSR . 17

2.2.4 LIRS-WSR . 17

2.2.5 CCF-LRU . 19

2.2.6 AD-LRU . 20

3 RESEARCH METHODOLOGY 21

iv

3.1 Data Collection . 21

3.2 Development Methodology and Tools . 23

3.3 LIRS-WSR . 23

3.3.1 Stack Pruning Function . 25

3.3.2 Data Structure . 25

3.3.3 Algorithm . 26

3.3.4 Flowchart . 28

3.3.5 Tracing . 28

3.4 CCF-LRU . 31

3.4.1 Data Structure . 32

3.4.2 Flowchart . 33

3.4.3 Tracing . 33

3.4.4 Algorithm . 37

4 RESULTS, ANALYSIS AND COMPARISONS 39

4.1 Testing . 39

4.1.1 Test Result of Workload 1 (Trace with Random Access) 39

4.1.2 Test Result of Workload 2 (Trace with Read-Most Access) 40

4.1.3 Test Result of Workload 3 (Trace with Write-Most Access) 40

4.1.4 Test Result of Workload 4 (Zipf Trace) 41

4.2 Analysis and Comparisons . 41

4.2.1 Hit Rate Analysis . 42

4.2.2 Write Count Analysis . 44

5 CONCLUSION 47

5.1 Conclusion . 47

5.2 Limitations . 48

References 49

Bibliography 52

Appendix A Sample Input Traces 53

A.1 Random Input Trace . 53

v

A.2 Read-most Input Trace . 54

A.3 Write-most Input Trace . 55

A.4 Zipf Input Trace . 56

vi

LIST OF FIGURES

2.1 CLOCK page replacement algorithm . 14

2.2 CF-LRU page replacement algorithm . 15

2.3 CFDC page replacement algorithm . 16

2.4 Two Lists of the LIRS algorithm . 18

2.5 Mixed LRU list and cold clean LRU list in CCF-LRU 19

3.1 General LIR vs. HIR Transition Diagram . 23

3.2 Specific LIR vs. Resident HIR Transition Diagram 24

3.3 LIR vs. Non-Resident HIR Transition Diagram 24

3.4 Flowchart of LIRS-WSR Algorithm . 28

3.5 Symbols of LIRS-WSR tracing . 29

3.6 Tracing of LIRS-WSR . 29

3.6 Tracing of LIRS-WSR (cont.) . 30

3.6 Tracing of LIRS-WSR (cont.) . 31

3.7 An example of CCF-LRU . 31

3.8 Flowchart of CCF-LRU Algorithm . 33

3.9 Symbols of CCF-LRU tracing . 34

3.10 Tracing of CCF-LRU . 34

3.10 Tracing of CCF-LRU (cont.) . 35

3.10 Tracing of CCF-LRU (cont.) . 36

4.1 Graph of Hit Rate for Workload 1 . 42

4.2 Graph of Hit Rate for Workload 2 . 42

4.3 Graph of Hit Rate for Workload 3 . 43

4.4 Graph of Hit Rate for Workload 4 . 43

4.5 Graph of Write Count for Workload 1 . 44

4.6 Graph of Write Count for Workload 2 . 44

vii

4.7 Graph of Write Count for Workload 3 . 45

4.8 Graph of Write Count for Workload 4 . 45

viii

LIST OF TABLES

1.1 Characteristics of flash memory . 2

3.1 Trace for Random Access . 22

3.2 Trace for Read-most Access . 22

3.3 Trace for Write-most Access . 22

3.4 Trace for Zipf . 22

4.1 Test Result of Workload 1 . 40

4.2 Test Result of Workload 2 . 40

4.3 Test Result of Workload 3 . 41

4.4 Test Result of Workload 4 . 41

ix

LIST OF ALGORITHMS

3.1 LIRS-WSR . 26

3.1 LIRS-WSR (cont.) . 27

3.2 CCF-LRU . 37

3.2 CCF-LRU (cont.) . 38

x

LIST OF ABBREVIATIONS

2Q Two Queue

µs Microsecond

AD-LRU Adaptive Double Least Recently Used

ARC Adaptive Replacement Cache

CCF Cold Clean First

CAR Clock with Adaptive Replacement

CCF-LRU Cold Clean First Least Recently Used

CDCSIT Central Department of Computer Science and Information Technology

CFDC Clean First Dirty Clustered

CF-LRU Clean First Least Recently Used

CLOCK-Pro Clock with Pro

CPU Central Processing Unit

CRF Combined Recency and Frequency

DRAM Dynamic Random Access Memory

DOECE Department of Electronics and Computer Engineering

EELRU Early Eviction Least Recently Used

EEPROM Electrically Erasable Programmable Read Only Memory

xi

FIFO First In First Out

GCLOCK Generalized CLOCK

GiB Giga Byte

GHz Giga Hertz

HIR High Inter-reference Recency

HIRS High Inter-reference Recency Set

I/O Input/output

IOE Institute of Engineering

IRR Inter-Reference Recency

kB Kilo Byte

LFU Least Frequently Used

LIR Low Inter-reference Recency

LIRS Low Inter-reference Recency Set

LIRS-WSR Low Inter-reference Recency Set Write Sequence Reordering

LRFU Least Recently Frequently Used

LRU Least Recently Used

LRU-WSR Least Recently Used Write Sequence Reordering

mA Milliampere

MRU Most Recently Used

ms Millisecond

NRU Not Recently Used

OLTP Online Transaction Processing

OPT or MIN OPTimum or MINimum

xii

OS Operating System

PDA Personal Digital Assistant

RAM Random Access Memory

TU Tribhuvan University

USB Universal Serial Bus

WSR Write Sequence Reordering

xiii

Chapter 1

BACKGROUND AND INTRODUCTION

1.1 Background

1.1.1 Flash Memory

Flash memory is non-volatile, shock resistant, and power economic. With recent technology

breakthroughs in both capacity and reliability, flash-memory storage systems are much more

affordable than ever. As a result, flash memory is now among the top choices for storage media

in embedded systems [1]. There are two major types of flash memory in the current market:

NAND and NOR flash memory. NAND flash memory is mainly designed for data storage and

NOR flash memory is for Electrically Erasable Programmable Read Only Memory (EEPROM)

replacement [1]. Flash memory has become a powerful and cost-effective solid-state storage

technology widely used in mobile electronics devices and other consumer applications. NAND

Flash, which was designed with a very small cell size to enable a low cost-per-bit of stored

data, has been used primarily as a high-density data storage medium for consumer devices such

as digital still cameras and Universal Serial Bus (USB) solid-state disk drives. NOR Flash

has typically been used for code storage and direct execution in portable electronics devices,

such as cellular phones and Personal Digital Assistants (PDAs) [2]. However, several hardware

limitations exist in a flash memory. Firstly, a data unit of erase operations is a block that is the

set of fixed number of contiguous pages even if a data unit of read/write operations is a page.

Secondly, it is impossible to re-write the page in-place in a flash memory. So, in order to update

data of the page, a system should perform only one of the following:

1

1. Writing these data to a newly allocated page and invalidating the original page; or

2. Writing these data to the original page only after erasing the block containing that page.

Thirdly, the lifetime of a flash memory is shorter than the lifetime of a hard disk and a Dynamic

Random Access Memory (DRAM). In other words, only a limited number of erase operations

can be performed safely to each memory cell, typically, between 100,000 and 1,000,000 cycles.

Finally, there exist differences among I/O latencies according to the kinds of I/O operations,

i.e., read, write, and erase. The write operation is about 10 times slower than the read operation

and the erase operation is about 20 times slower than the write operation [3, 4, 5].

Flash caching is needed for reducing flash I/O latencies. The traditional magnetic-disk-based

buffering algorithms Least Recently Used (LRU) [6], LIRS [7], Adaptive Replacement Cache

(ARC) [8] etc. focus on hit-ratio improvement alone, but not on write costs caused by the

replacement process. So, their straight adoption would result in poor buffering performance

and would demote the development of flash-based systems. The replacement policy should

minimize the number of writes and erases operations on flash memory, and at the same time

prevent the degradation of the hit ratio. Recently, CF-LRU [9], LIRS-WSR [3] and Adaptive

Double Least Recently Used (AD-LRU) [10] were proposed as new buffering algorithms for

flash-based systems. These new flash based buffer replacement policies consider not only buffer

hit ratios but also replacement costs incurring when a dirty page has to be propagated to flash

memory to make room for a requested page currently not in the buffer. These algorithms try

to obtain the optimal I/O sequence from the given I/O sequence by discriminatively selecting

the accesses according to the type of I/O operations. These algorithms favor to first evict clean

pages from the buffer so that the number of writes incurring for replacements can be reduced.

Table 1.1: Characteristics of flash memory

Device Current (mA) Access time (4 kB)

Idle Active Read Write Erase

NOR 0.03 32 20 µs 28 ms 1.2 sec
NAND 0.01 10 25 µs 250 µs 2 ms

Compared to the magnetic disk, flash memory has special properties. Firstly, flash memory has

no latency associated with the mechanical head movement to locate the proper position to read

or write data. Secondly, flash memory has asymmetric read and write operation characteristic

2

in terms of performance and energy consumption. Table 1.1 compares the access time and the

energy consumption in flash memory when 4 kB data is read, written, or erased [1]. Thirdly,

flash memory does not support in-place update; the write to the same page cannot be done

before the page is erased. Thus, as the number of write operations increases so does the number

of erase operations. If the erase operations are involved, the cost imbalance would be even

worse. Finally, blocks of flash memory are worn out after the specified number of write/erase

operations.

1.1.2 Performance Metrics

The off-line performance of buffer replacement algorithm is measured in terms of page fault

count, hit rate and hit ratio, miss rate and miss ratio, and write count. When an accessed block

of memory is currently mapped to the physical memory then hit occurs. If it doesn’t map them

miss occurs. The Higher hit rate of the algorithm exhibits higher performance. In the case of

flash based system, a minimum number of write count is a measure for optimal cost algorithm.

flash based system, a minimum number of write count is a measure for optimal cost algorithm.

1.1.2.1 Page Fault Counts

Page Fault is an interrupt generated when the processor references a page that is neither in cache

nor in main memory. An efficient page replacement algorithm always produces less number of

page faults. It can be computed by counting the occurrences of a number of page faults between

some intervals of references.

1.1.2.2 Hit/Miss Rate

When the processor needs to read or write a location in main memory, it first checks whether

that memory location is in the cache. This is accomplished by comparing the address of the

memory location to all tags in the cache that might contain that address. If the processor finds

that the memory location is in the cache, we say that a cache hit has occurred; otherwise, we

speak of a cache miss.

Miss rate can be calculated by using the formula:

miss rate = 1-hit rate.

3

Hit ratio is calculated by subtracting miss ratio from 1.

Miss ratio (mr) is calculated by using the formula:

mr = 100 * ((#pf - #distinct) / (#refs - #distinct))

where #pf is a number of page faults, #distinct is the number of distinct pages referenced and

#refs is the total number of referenced pages [11].

Hit ratio is also calculated by dividing a total number of hit counts by a total number of refer-

ence counts.

Hit ratio = Total number of Hit Counts/Total number of Reference Counts

To represent it as a percentage: Hit% = Hit ratio * 100

1.1.2.3 Write Counts

Write count is a number of pages propagated to flash memory which can be calculated by

counting the number of physical pages writes to flash memory and at the end of each test the

dirty pages in the buffer are flushed to the flash memory to get exact write counts.

1.1.3 Program behavior

There are several factors that influence the performance of page replacement algorithm. The

performance of page replacement algorithm relies on the pattern of pages that are referenced.

The behavior of the program depends on the access pattern it references memory which further

depends on working set and locality of reference.

1.1.3.1 Locality of Reference

The locality of reference, also known as the principle of locality. During the course of execution

of program memory references tend to cluster forming certain locality. Locality varies on the

basis of time and space. Temporal locality is based on time; it assumes that memory location

referenced just now is likely to be referenced again in near future. Looping, subroutines, stacks,

the variable used for counting and totaling etc. supports this assumption. Spatial locality is

based on space, is assumes that once a memory is referenced there is a high chance of nearby

memory location to be referenced again. Array traversal, sequential code execution, related

4

variable declaration nearby in source code supports this assumption. Hints of the locality are

followed in any type memory reference sequence.

1.1.3.2 Memory Reference Patterns

Altogether three types of standard synthetic traces i.e. random traces, read-most traces and

write-most traces are used in this dissertation.

1.1.3.2.1 Random Traces The page references having random read and write nature of

pages are called random traces.

1.1.3.2.2 Write-most Traces The page references having most of the pages with write

mode nature are called write-most traces.

1.1.3.2.3 Read-most Traces The page references having most of the pages with read mode

nature are called read-most traces.

1.1.3.2.4 Zipf Traces Zipf trace has a referential locality 20/80 meaning that eighty percent

of the references deal with the most active twenty percent of the pages.

1.2 Introduction

1.2.1 Problem Definition

Since the use of flash memory requires buffer replacement policies considering not only buffer

hit ratios or miss ratios but also replacement costs incurring when a dirty page has to be propa-

gated to flash memory, not in the buffer. There are many buffer replacement algorithms de-

veloped for flash-based systems. The traditional magnetic-disk-based buffering algorithms

LRU [6], LIRS [7], ARC [8] etc. focus on hit-ratio improvement alone, but not on write

costs caused by the replacement process. However, Flash memory has characteristics of out-

of-place update and asymmetric I/O latencies for read-write and erase operations in the aspects

of time and energy. So, the replacement algorithm with flash memory should consider not

5

only the hit count but also the replacement cost caused by selecting dirty victim pages. There

are many buffer replacement algorithms developed for flash-based systems. The evaluation

of these buffer replacement algorithms for flash-based systems in terms of hit rate and write

counts is required to rate their performance. This dissertation work has mainly focused on the

comparative evaluation of two algorithms: LIRS-WSR and CCF-LRU.

1.2.2 Objectives

The main objectives of this dissertation work are:

• To simulate the algorithm LIRS-WSR and CCF-LRU; and

• To perform a comparative analysis of LIRS-WSR and CCF-LRU buffer replacement al-

gorithms for flash based systems in terms of hit rate and write count.

1.2.3 Motivation

Since the use of flash memory requires buffer replacement policies considering not only buffer

hit ratios or miss ratios but also replacement costs incurring when a dirty page has to be prop-

agated to flash memory, not in the buffer. As a consequence, a replacement policy should

minimize the number of write/erase operations on flash memory and at the same time increase

the hit ratio. Memory management is not only the burden of today’s computing devices. It has

been researched for decades. Whatever variety of storage devices found in today’s market is the

great achievement of computer science. But still, computer memory is the limited source which

directly hampers the performance of computing system. Performance gain can be achieved by

increasing the capacity of primary storage. The expectation of customer is to decrease cost

price with sufficient working memory. Hence to fulfill this demand for manufacturing such

device fewer materials are used and size of memory is being decreased. But rather than this

technical view, it is not possible to gain performance without managing memory logically for

it’s usability. Varieties of techniques had been tried for this achievement. Among such tech-

niques, paging is the successful one. Page replacement algorithm is the main part of paging

technique because deciding the victim page is a very tough job.

The emergence of single flash memory chip with several gigabytes capacity makes a strong

tendency to replace the magnetic disk with flash memory for the secondary storage of mobile

6

computing devices. Most operating systems are customized for disk-based storage systems and

their replacement policies only concern the number of cache hits. However, the operating sys-

tems that consider flash memory as secondary storage should consider different read and write

cost of flash memory when they replace pages to reclaim free space. There are different buffer

replacement algorithms proposed for flash-based storage systems. Some of them consider re-

cency factor only, some consider cleanliness, some both of these factors and some consider

recency, cleanliness, and frequency of page references as well.

1.3 Dissertation Organization

Background part of this dissertation work focuses the related basic terms and terminologies of

the performance of buffer algorithms which are already mentioned. Some chapters are remain-

ing which clarifies the topics fulfilling the objectives of this dissertation work.

Chapter 2 consists of literature review which briefly reviews the related topics. The literature

review includes the summary of several traditional page replacement.

Chapter 3 consists of research methodology steps of the dissertation which includes details

about data collection and memory references that show trace-driven input. Also, it includes de-

tails about the used programming tools, data structures, algorithm, and the flowchart to develop

the simulator.

Chapter 4 consists results, analysis, and comparisons which include output results with several

analyzing graphs which are tested for different workloads.

Chapter 5 consists of the conclusion of this whole dissertation work and the future work which

shows guidelines for further research.

7

Chapter 2

LITERATURE REVIEW

2.1 Traditional Buffer Replacement Algorithms

2.1.1 OPT or MIN Page Replacement Algorithm

Various memory management techniques have been used from the beginning for the improve-

ment of performance. Bélády [6] in 1966 developed optimal page replacement algorithm called

OPTimum or MINimum (OPT or MIN). His algorithm depends on the principle of optimality

which states “To obtain optimal performance the page to replace is the one that will not be

used again for the furthest time into the future.” His optimal algorithm is not applicable for real

implementation because our Operating System (OS) doesn’t know which pages will be used

before execution. Hence it can be only simulated due to lack of future knowledge. It is used

as a benchmark for measuring the effectiveness of other page replacement algorithms. OPT

Replacement algorithm replaces the page that will not be used for the longest period of time

by computing maximum forward distance. From the past experiences and research papers,

the research on the page replacement algorithms are categorized into LRU based replacement

algorithms and CLOCK based replacement algorithms [12].

2.1.2 LRU Based Page Replacement

2.1.2.1 FIFO Page Replacement Algorithm

The simplest page-replacement algorithm is a First In First Out (FIFO) [6] algorithm. In this

algorithm, operating system keeps track of all pages in the memory in a queue, oldest page

8

is in the front of the queue. When a page needs to be replaced the page in the front of the

queue is selected for removal. Conceptually FIFO is a queue with limited size. Initially, the

queue is filled by inserting page reference from the tail. When the queue is full new reference

is inserted from tail and old reference is evicted from the head. FIFO is simple but suffers

from Bélády’s Anomaly, a strange situation in which page fault increased while increasing the

number of the page frame. That is, with an increase in physical memory, FIFO can decrease

page fault performance seemingly at random. Like random page replacement algorithm, FIFO

still does not take advantage of locality trends. But it can be modified very easily.

2.1.2.2 LRU Page Replacement Algorithm

A good approximation to the optimal algorithm is based on the observation that pages that have

been heavily used in the last few instructions will probably be heavily used again in the next few.

Conversely, pages that have not been used for ages will probably remain unused for a long time.

This idea suggests a realizable algorithm: when a page fault occurs, throw out the page that has

been unused for the longest time. This strategy is called LRU paging [6]. This algorithm is

purely based on recency of page references. Recency is evaluated by maintaining LRU stack

that is a sorted list on the basis of virtual time which is the only factor for replacement. Thus

LRU is simple but is not easy to implement without hardware support. It can adapt faster

according to as program behavior. LRU like algorithm doesn’t suffer from Bélády’s Anomaly

as FIFO. It gives a good approximation of optimal algorithm. Although LRU is theoretically

realizable, it is not cheap. To fully implement LRU it is necessary to maintain a linked list of

all pages in memory, with the most recently used page at head and least recently used page at

the tail. The difficulty is that the list must be updated on every memory reference. Finding a

page in the list, deleting it and then moving it to the head is a very time-consuming operation.

2.1.2.3 NRU Page Replacement Algorithm

Not Recently Used (NRU), sometimes known as the LRU, page replacement algorithm is an

algorithm that favors keeping pages in memory that have been recently used. This algorithm

works on the following principle: when a page is referenced, a referenced bit is set for that page,

marking it as referenced. Similarly, when a page is modified, a modified bit is set. The setting

of the bits is usually done by the hardware, although it is possible to do so on the software level

9

as well. Pages are categorized into four classes in NRU algorithm:

• Class 0 contains pages that are neither referenced nor modified;

• Class 1 contains pages that are modified but not referenced;

• Class 2 contains pages that are referenced but not modified; and

• Class 3 contains pages that are modified as well as referenced.

During page fault, NRU evicts any page from the lowest class [13].

2.1.2.4 LFU Page Replacement Algorithm

Least Frequently Used (LFU) [14] selects a victim page that has not been used often in the

past. Instead of using a single recency factor as LRU, LFU defines additional information

of frequency of use associated with each page. This frequency is calculated throughout the

reference stream by maintaining counting information. Frequency count leads to the serious

problem after a long duration of reference stream. Because when the locality changes, reaction

to such certain change will be extremely slow. Assuming that a program either changes its set

of active pages or terminates and is replaced by a completely different program, the frequency

count will cause pages in the new locality to be immediately replaced since their frequency is

much less than the pages associated with the previous program. Since the context has changed,

the pages swapped out will most likely be needed again soon which leads to thrashing. One

way to remedy this is to use a popular variant of LFU, which uses frequency counts of a page

since it was last loaded rather than since the beginning of the page reference stream. Each time

a page is loaded, its frequency counter is reset rather than being allowed to increase indefinitely

throughout the execution of the program. LFU still tends to respond slowly to change in the

locality.

2.1.2.5 EELRU Page Replacement Algorithm

Some algorithms use recency as history information like LRU and Most Recently Used (MRU).

LRU is suitable for the good locality of reference whereas MRU is somewhat suitable for the

weak locality of workloads. These two algorithms can be tuned to form adaptive algorithm

10

called Early Eviction Least Recently Used (EELRU) [15], which was proposed as an attempt

to mix LRU and MRU, based only on the positions on the LRU queue that concentrates most

of the memory references. This queue is only a representation of the main memory using the

LRU model, ordered by the recency of each page. EELRU detects potential sequential access

patterns analyzing the reuse of pages. One important feature of this algorithm is the detection

of non-numerically adjacent sequential memory access patterns. Two tunable parameters used

are early eviction point and late eviction point. LRU queue concentrates most of the memory

references when it reaches late eviction point.

2.1.2.6 LRFU Page Replacement Algorithm

The LRU and LFU replacement policies are two extreme replacement policies. The LRU policy

gives weight to only one reference for each block, that is, the most recent reference to the

block while giving no weight to older ones representing one extreme, and the LFU gives equal

weight to all references representing the other extreme. These extremes imply the existence

of a spectrum between them. In [16], proposed such a spectrum which is called the Least

Recently Frequently Used (LRFU) policy. The LRFU policy associates a value with each

block. This value is called the Combined Recency and Frequency (CRF) value and quantifies

the likelihood that the block will be referenced in the near future. The performance of the

LRFU algorithm largely relies on a parameter called λ, which determines the relative weight

of LRU or LFU and has to be adjusted according to the system configuration, even according

to different workloads [17].

2.1.2.7 LRU-K Page Replacement Algorithm

The LRU policy takes into account the recency information while evicting pages, without con-

sidering the frequency. To consider the frequency information, LRU-K [18] was proposed

which evicts pages with the largest backward K-distance. Backward K-distance bt(p, K) can

be defined as the distance backward to the Kth most recent reference to page p where reference

string is known up to time t (r1, r2, . . . , rt). The value of parameter K can be taken as 1, 2 or

3. If K=1, it works as simple LRU algorithm. Highly increasing the value of K the overall per-

formance of algorithm reduces. LRU-K can discriminate better between frequently referenced

and infrequently referenced pages. Unlike the approach of manually tuning the assignment of

11

page pools to multiple buffer pools, LRU-K does not depend on any external hints. Unlike LFU

and its variants, this algorithm copes well with temporally clustered patterns.

2.1.2.8 2Q Page Replacement Algorithm

Two Queue (2Q) [19] is a good buffering algorithm (giving a 5-10% improvement in hit rate

over LRU for a wide variety of applications and buffer sizes, and never hurting), having constant

time overhead, and requiring little or no tuning. It works well for the same intuitive reason that

LRU/B works well: it bases buffer priority on sustained popularity rather than on a single

access. 2Q algorithm quickly removes sequentially and cyclically referenced block with after a

long interval. The algorithm uses special buffer queue A1in of size Kin, ghost buffer queue A1out

of size Kout and the main buffer Am. The special buffer contains all missed that is first time

referenced block. Ghost buffer contains replaced blocks from the special buffer. Frequently

accessed blocks are available in the main buffer. Hence victim blocks are always from the

special buffer and main buffer.

2.1.2.9 LIRS Page Replacement Algorithm

Another important algorithm is LIRS which is already described in section 2.2.4. Its objective

is to minimize the deficiencies presented by LRU using an additional criterion named Inter-

Reference Recency (IRR) that represents the number of different pages accessed between the

last two consecutive accesses to the same page. This means that LIRS does not replace the page

that has not been referenced for the longest time, but it uses the access recency information to

predict which pages have more probability to be accessed in a near future.

2.1.2.10 ARC Page Replacement Algorithm

The ARC [8] is an adaptive page replacement algorithm developed at the IBM Almaden Re-

search Center. The algorithm keeps a track of both frequently used and recently used pages,

along with some history data regarding eviction for both. It improves the LRU strategy by split-

ting the cache directory into two lists, T1 and T2, for recently and frequently referenced entries.

In turn, each of these is extended with a ghost list (B1 or B2) which is attached to the bottom of

these two lists. These ghost lists act as score cards by keeping track of the history of recently

evicted cache entries and the algorithm uses ghost hits to adapt to recent change in resource

12

usage. The ghost lists only contain meta-data (keys for the entries) and not the resource data

itself, i.e. as an entry is evicted into a ghost list its data is discarded. The combined cache

directory is organized in four LRU lists:

1. T1, for recent cache entries;

2. T2, for frequent entries, referenced at least twice;

3. B1, ghost entries recently evicted from the T1 cache but are still tracked; and

4. B2, similar ghost entries, but evicted from T2.

T1 and B1 together are referred to as L1, a combined history of recent single references. Simi-

larly, L2 is the combination of T2 and B2.

2.1.3 CLOCK Based Page Replacement Algorithm

2.1.3.1 CLOCK Page Replacement Algorithm

Frank Corbató (who later went on to win the ACM Turing Award) introduced CLOCK [20] as

a one-bit approximation to LRU, and its performance characteristics are very similar to those

of LRU. So all the performance disadvantages about LRU are also applied to CLOCK. In

CLOCK, the memory spaces holding the pages can be regarded as a circular buffer. Here each

page is associated with a bit, called reference bit, which is set by hardware whenever the page

is accessed. When it is necessary to replace a page to service a page fault, the page pointed

to by the hand is checked. If its reference bit is unset, the page is replaced. Otherwise, the

algorithm resets its reference bit and keeps moving the hand to the next page [21].

When a page fault occurs, the page being pointed to by the hand is inspected.

• R = 0, the page is evicted, the new page is inserted into the clock in its place, and the

hand is advanced one position; and

• R = 1, it is cleared and the hand is advanced to the next page. This process is repeated

until a page is found with R = 0.

13

A

J

G

D

When page fault occurs, the page the hand is

pointing to is inspected.

The action taken depends upon the R bit:

R=0; Evict the page

R=1; Clear R and advance hand

Figure 2.1: CLOCK page replacement algorithm

2.1.3.2 Clock-Pro

In Paper [21], proposed an improved CLOCK replacement policy, called Clock with Pro (CLOCK-Pro).

It takes the same principle as that of LIRS-it uses reuse distance (called IRR in LIRS) rather

than recency in its replacement decision. When a page is accessed, the reuse distance is the

period of time in terms of the number of other distinct pages accessed since its last access. A

page is categorized as a cold page if it has a large reuse distance or as a hot page if it has a small

reuse distance. Although there is a reuse distance between any two consecutive references to a

page, only the most current distance is relevant in the replacement decision.

2.1.3.3 CAR Page Replacement Algorithm

In paper [22], proposed a simple and elegant new algorithm, namely, Clock with Adaptive

Replacement (CAR), that has several advantages over CLOCK:

1. It is scan-resistant;

2. It is self-tuning, and it adaptively and dynamically captures the recency and frequency

features of a workload;

3. It uses essentially the same primitives as CLOCK, and, hence, is low-complexity and

amenable to a high-concurrency implementation; and

4. It outperforms CLOCK across a wide range of cache sizes and workloads.

14

The algorithm CAR is inspired by the Adaptive Replacement Cache (ARC) algorithm, and

inherits virtually all advantages of ARC including its high performance, but does not serialize

cache hits behind a single global lock.

This algorithm uses two clocks T1 & T2 and two lists B1 & B2. T1 and T2 contain cold pages

and hot pages i.e. contain pages in the cache, while B1 & B2 maintain history information about

the recently evicted pages from B1 & B2 respectively.

2.1.3.4 GCLOCK Page Replacement Algorithm

Paper [23] proposed a new algorithm, namely, Generalized CLOCK (GCLOCK). The GCLOCK

buffer replacement policy uses a circular buffer and a weight associated with each page brought

in the buffer to decide on which page to replace. Whenever a page is referenced, the associated

count field is set to i. When a page fault occurs, a pointer that circles around this circular list

of page frames is observed. If the count field pointed to zero, then the page is removed and

the new page is placed in that frame. Otherwise, the count is decremented by 1, the pointer

is advanced to the next count field and the process is repeated. When a new page is placed in

the page frame, the count field is set to i if the page is to be referenced (demand fetch) and it

is set to j if the page has been pre-paged and is not immediately referenced. This algorithm

abbreviated by writing CLOCKP (j, i). The P indicates that this is a pre-paging algorithm (the

pre-paging strategy has not been specified).

2.2 Buffer Replacement Algorithms for Flash-Based Systems

2.2.1 CF-LRU

D C D C D C D C

D CDirty Page Clean Page

LRUMRU

Working Region Clean First Region

L1

Window, W

L
R

U
 L

is
t

Figure 2.2: CF-LRU page replacement algorithm

15

CF-LRU [9] is the first algorithm designed for flash-based systems. CF-LRU tries to reduce the

number of costly write operations and potential erase operations until the degradation of cache

hit rate does not harm the performance. It modified the LRU policy by introducing a clean

first window W, which starts from the LRU position and contains the least recently used w*B

pages, as shown in Figure 2.2, where B is the buffer size and w is the ratio of the window size

to buffer size. When the victim is selected, CF-LRU first evicts least recently used clean pages

in W. Hence it reduces the number of write operations because the clean page is not propagated

to flash memory. If no clean page is found, then it behaves like LRU policy. CF-LRU has some

problems such as clean-first window size is to be tuned to the current workload and cannot suit

for differing workloads and it always replaces clean pages first, which causes the cold dirty

pages residing in the buffer for a long time and, in turn, results in suboptimal hit ratio. The

window size, W, can be tuned statically or dynamically. In this sense, CF-LRU is known as

CF-LRU-static or CF-LRU-dynamic. In paper [9], CF-LRU-static and CF-LRU-dynamic have

been compared with LRU policy for five different workloads. They found a result that CF-LRU

static and dynamic reduces the replacement cost by 28.4% and 23.1% for swap system buffer

cache and 26.2% and 23.5% for file system buffer cache with compared to LRU.

2.2.2 CFDC

Clean First Dirty Clustered (CFDC) [24] improves the efficiency of the buffer manager by

flushing pages in a clustered fashion, based on the observation that flash writes with strong

spatial locality can be served by flash disks more efficiently than random writes. It manages

Working region

Victim

Dirty queue

Clean queue

Priority region

Figure 2.3: CFDC page replacement algorithm

the buffer in two regions: the working region W for keeping hot pages that are frequently

revisited and the priority region P responsible for optimizing replacement costs by assigning

varying priorities to pages. A parameter λ, called priority window, determines the size ratio

16

of P relative to the total buffer. Therefore, if the buffer has B pages, then P contains λ pages

and the remaining (1-λ)*B pages are managed in W. Various conventional replacement policies

can be used to maintain high hit ratios in W and, therefore, prevent hot pages from entering P.

CFDC improves the efficiency of buffer manager by flushing pages in clustered fashion based

on the observation that flash writes with strong spatial locality can be served by flash disks more

efficiently than random writes. In paper [24], CFDC has been compared with LRU and CF-LRU

for different four workloads in the database engine. The results show CFDC outperforms both

competing policies, with a performance gain between 14% and 41% over CF-LRU, which, in

turn, is only slightly better than LRU with a maximum performance gain of 6%.

2.2.3 LRU-WSR

LRU-WSR [25] is a flash-aware algorithm based on LRU and Second Chance [20], using only

a single list as an auxiliary data structure. The idea is to evict clean and cold-dirty pages and

keep the hot-dirty pages in the buffer as long as possible. When a victim page is needed, it

starts searching from the LRU end of the list. If a clean page is found, it will be returned

immediately (LRU and clean-first strategy). If a dirty page marked as “cold” is found, it will

also be returned; otherwise, it will be marked “cold” (Second Chance), moved to the MRU end

of the list and the search continues. Although LRU-WSR considers the hot/cold property of

dirty pages, which is not tackled by CF-LRU, it has a high dependency on the write locality

of workloads. It shows low performance in case of low write locality, which may cause dirty

pages to be quickly evicted. In paper [25], LRU-WSR has been compared with LRU, CF-LRU

algorithms for different workloads collected from PostgreSQL, GCC, Viewperf, and Cscope.

LRU-WSR has been found 1.4 times faster than LRU. In most of the cases, LRU-WSR has

higher hit ratio and lower write count than others.

2.2.4 LIRS-WSR

LIRS-WSR [3] algorithm is designed for a buffer cache of the flash memory based storage

system. The objective of LIRS-WSR is reducing the number of flushes of dirty pages from the

buffer into flash memory when page replacement occurs, To achieve this objective, it uses the

strategy: delaying eviction of the page which is dirty and has high access frequency as possi-

ble. It enhances an existing LIRS buffer replacement algorithm with add-on buffer replacement

17

R

R

R

Top

R R R

List Q

L
IR

S
 S

ta
ck

 S

End

Bottom

Front

R

R HIR page (all LIR pages are resident)

Non-resident HIR Page

Resident HIR page

Figure 2.4: Two Lists of the LIRS algorithm

strategy, namely Write Sequence Reordering (WSR). WSR reorders writing not-cold dirty

pages from the buffer cache to the disk to reduce the number of write operations while prevent-

ing excessive degradation of the hit ratio. The LIRS [7] algorithm uses history information of

data accesses in the form of two metrics - the IRR and the Recency. The IRR of a data block

refers to the number of other distinct blocks accessed between the last two consecutive ac-

cesses of the data block in question while recency refers to the number of other distinct blocks

accessed between the last reference to the current time.

LIRS algorithm uses two sets of pages based on IRR. Set of pages with low IRR value is taken

as a hot block and called LIRS. Set of pages with high IRR value is taken as a cold block and

called High Inter-reference Recency Set (HIRS). Blocks that can be most probably used in

future are taken as hot blocks whereas blocks that may not be used in near future are taken as

cold blocks. Hence, High Inter-reference Recency (HIR) blocks are always replaced and Low

Inter-reference Recency (LIR) blocks are never replaced. LIRS always selects HIR page with

the largest recency as a victim for replacement. WSR policy is developed to adapt LIRS with

flash memory [3]. The basic scheme of WSR is following:

1. Use cold-detection algorithm to judge whether the page is cold or not; and

2. Delays flushing dirty pages which are not regarded as cold.

LIRS-WSR is implemented using 2 lists: LIR stack S which stores all LIR pages as well as

HIR pages regardless of the residence status—some of them are resident and others are not

18

(actually, only their meta-data are stored in the list)—and HIR list Q that stores HIR resident

pages. The operations on these two data structures are same that of LIRS. Every page has

additional status either cold or not-cold. Initially, all pages are cold, this cold flag is cleared if

the pages are referenced again when they are in stack S or queue Q. If a page is introduced to

the buffer for a write request for the first time, it becomes a dirty page and enters the top of the

stack S as an LIR page. Every time when Stack’s bottom is moved to HIR Q, WSR policy is

applied. That is, if bottom LIR page is dirty and not cold, then it’s cold flag is set and moved

to the head of Stack, otherwise, it is moved to the head of HIR Q. All other operations like

pruning, switching between LIR and HIR pages are same as that of LIRS.

2.2.5 CCF-LRU

An efficient new buffer replacement algorithm for flash memory based storage systems called

CCF-LRU [26]. The goal of CCF-LRU is to improve the overall I/O performance by focusing

on reducing the write count incurring in the replacement process. In order to accomplish this

goal, it tries to first evict clean pages with low access frequencies. If there are no such clean

pages, it will evict the dirty pages with low access frequencies instead of the clean pages with

high access frequencies. Using the cold-detection mechanism of LRU-WSR, pages in the buffer

list can be classified into the following four groups, namely cold clean page, hot clean page,

cold dirty page, and hot dirty page. A cold flag attached with each page is used to distinguish

cold pages from hot pages. The CCF-LRU algorithm maintains two LRU lists, which are called

Hot

Dirty

Hot

Clean

Cold

Dirty

Hot

Dirty

Cold

Dirty

Mixed LRU List, L1

Cold

Clean

Cold

Clean

Cold

Clean

Cold

Clean

Cold

Clean

Cold Clean LRU List, L2

L1 L2

L=L1+L2

Figure 2.5: Mixed LRU list and cold clean LRU list in CCF-LRU

mixed LRU list and cold clean LRU list. The mixed LRU list contains L1 pages and is used to

maintain hot clean pages and dirty pages regardless of the status of its cold flag and the cold

19

clean LRU list with the size of L2 is only for cold clean pages. If the buffer contains a total of

L pages, the sizes of the two LRU lists are both from 0 to L. Moreover, the sum of L1 and L2

is L. The first referenced pages are regarded as cold by default, each of which is inserted into

the cold clean LRU list with a cold flag. When the page in the cold clean LRU list is referenced

again or becomes dirty, it will be moved from the cold clean LRU list to the MRU position in

the mixed LRU list. When the page in the mixed LRU list is referenced, it will be moved to

the MRU position of the mixed LRU list. The CCF-LRU selects a victim page by the following

rules in order:

1. If the cold clean LRU list is not empty, the LRU page in the cold clean LRU list is selected

as the victim; and

2. If the cold clean LRU list is empty, the LRU page in the mixed LRU list is chosen as the

victim candidate. If the candidate is a cold dirty page, it is selected as the victim. If the

candidate is a hot dirty page, it is labeled as cold and moved to the MRU position of the

mixed LRU list. If the candidate is a hot clean page, it is set to cold and moved from the

mixed LRU list to the MRU position of the cold clean LRU list and we continue to check

the LRU position in the mixed LRU list. If there is no victim found after traversing the

mixed LRU list, it needs to call the CCF-LRU algorithm one more time to select a victim.

2.2.6 AD-LRU

AD-LRU algorithm [10] is buffer replacement algorithm for flash-based systems which focuses

on reducing the write costs of the buffer replacement algorithm while keeping a high hit ratio.

It tries to integrate the properties: recency, frequency, and cleanness of pages into the buffer

replacement policy. AD-LRU has two LRU queues: Cold LRU queue and Hot LRU queue,

to capture the concept of recency and frequency of the page references, among which Cold

LRU queue stores the pages referenced only once and Hot LRU queue maintains the pages that

are referenced at least twice. The sizes of these two LRU queues are dynamically adjusted

according to changes in reference patterns. When a page is first referenced, it is put in the head

of cold LRU queue. The pages move from cold LRU queue to head of hot LRU queue when it

is referenced again and when a page in hot LRU queue is selected as a victim, it is demoted to

head of cold LRU queue. During the eviction procedure, least recently used a clean page from

cold LRU queue is selected as a victim.

20

Chapter 3

RESEARCH METHODOLOGY

The main purpose of research is to discover answers to the questions through the applications

of scientific procedures. Research is a careful study performed to find out new things in a

systematic way. In a scientific method of research at the first problem is formulated then output

information is generated from collected input data and output is analyzed and finally, the result

is generalized [27]. This dissertation work is truly scientific and flows in the same way. Page

replacement algorithm is one of the major strategies to manage memory efficiently. The main

exploration of this dissertation focuses on LIRS-WSR and CCF-LRU algorithms developed

to address flash memory characteristics in memory management. Out of different types of

research methodologies, this dissertation is based on the trace-driven simulation approach. All

the data collected which are traces of page references. Output information gathered is analyzed

in a quantitative approach. Finally, the conclusion is drawn with the help of analyzed data.

3.1 Data Collection

Data are the sources of information. Hence data should be collected very carefully. In this dis-

sertation work, four types of synthetic traces [10] have been used in the simulation experiment,

i.e., random trace, read- most trace (e.g., of decision support systems), write-most trace (e.g.,

of Online Transaction Processing (OLTP) systems) and Zipf trace as Workload 1, Workload 2,

Workload 3, and Workload 4 respectively. These data are real memory traces. Workload repre-

sents the different locality of memory reference patterns that are generated during execution of

the process in real OS. There is total 100,000 pages reference in each of the first three traces,

21

which are restricted to a set of pages whose numbers range from 0 to 49,999. The total number

of page references in the Zipf trace is set to 500000 in order to obtain a good approximation,

while the page numbers still fall in [0, 49999]. Zipf trace has a referential locality “20/80”

meaning that eighty percent of the references deal with the most active twenty percent of the

pages. The Sample of Workload 1, Workload 2, Workload 3, and Workload 4 are in appendix

A.1, appendix A.2, appendix A.3, and appendix A.4 respectively. Tables 3.1, 3.2, 3.3, and 3.4

show the details concerning these workloads.

Table 3.1: Trace for Random Access

Attributes Value

Total I/O references 100,000
Total distinct references 43247
R/W ratio 50%/50%
Reference patterns Uniform

Table 3.2: Trace for Read-most Access

Attributes Value

Total I/O references 100,000
Total distinct references 43212
R/W ratio 90%/10%
Reference patterns Uniform

Table 3.3: Trace for Write-most Access

Attributes Value

Total I/O references 100,000
Total distinct references 43182
R/W ratio 10%/90%
Reference patterns Uniform

Table 3.4: Trace for Zipf

Attributes Value

Total I/O references 500,000
Total distinct references 47023
R/W ratio 50%/50%
Reference locality 20%/80%

22

3.2 Development Methodology and Tools

The simulator is built by using an incremental approach. The LRU stack automatically main-

tains recency factor. Information of recently referenced block is available on top of the stack

and the oldest in the bottom of the stack. Every time when the block is accessed it is kept on top

of the stack. LIRS-WSR and CCF-LRU algorithms are also implemented by using doubly link

list and list interface. The algorithms have been implemented in C++ programming language

using Microsoft® Visual Studio and intellij idea on Intel® Core™ i5-4210U Central Processing

Unit (CPU) @ 1.7GHz with 4GiB Random Access Memory (RAM) Microsoft® Windows 10

1607, 64 bit OS.

3.3 LIRS-WSR

The LIRS [7] algorithm can be implemented using 2 lists: LIR stack S which stores all LIR

pages as well as HIR pages regardless of the residence status some of them are resident and

others are not (actually, only their meta-data are stored in the list) and HIR list Q that stores HIR

resident pages. The sum of the size of HIRS and size of LIRS equals to the size of the cache.

HIR block that may be resident or non-resident can be promoted to LIR block. At the same

time to maintain the LIRS and HIRS size, oldest LIR block must be demoted to HIR-resident

block. Then one of the resident HIR blocks becomes the victim. The promotion/demotion

LIR HIR

Promotion

Demotion

Figure 3.1: General LIR vs. HIR Transition Diagram

policy is shown in the Figures 3.1, 3.2, and 3.3 show the specific promotion/demotion policy

among LIR, resident HIR and non-resident HIR, so as to maintain partition size. Every page has

additional status either cold or not-cold. Its main purpose is to maintain recency value. As we

move toward bottom recency factor increases. Bottom most one is always LIR block, which

is the oldest block having higher recency factor and topmost one is the recent block having

23

recency factor equals to zero. Each stack node contains information about reference block.

LIR

LIR

Resident

HIR

Resident

HIR

Promotion Demotion

Figure 3.2: Specific LIR vs. Resident HIR Transition Diagram

Here information of every page reference is not available in stack S due to the major event

stack pruning. Some information is also available in queue Q and some outdated information

is also left in Stack. Queue Q contains collection referenced pages that are resident HIR blocks

available in the cache. Hence the size of HIR cache partition determines the size of Queue

Q. Initially, all pages are cold, this cold flag is cleared if the pages are referenced again when

Non-

resident

HIR

LIR

Promotion
Resident

HIR

LIR

Non-

resident

HIR

Demotion

Promotion

Figure 3.3: LIR vs. Non-Resident HIR Transition Diagram

they are in stack S or queue Q. The block in the Queue can be removed from anywhere if it

is promoted to LIR. Comparing IRR and recency value is automatically done by the use of Q

which increases performance. If a page is introduced to the buffer for a write request for the

first time, it becomes a dirty page and enters the top of the stack S as an LIR page. Every time

24

when Stack’s bottom is moved to HIR Q, WSR policy is applied. That is, if bottom LIR page

is dirty and not cold, then it’s cold flag is set and moved to the head of Stack, otherwise it is

moved to the head of HIR Q. That is, only clean or dirty cold pages are moved to the head of

HIR Q from the bottom of S. Stack pruning operation is performed on every move of operation

performed on bottom LIR page of S.

3.3.1 Stack Pruning Function

The major function stack pruning is conducted during the status change. The Bold assumption

of the algorithm is that bottom of stack S is always LIR block. While changing status, the page

in the bottom of the stack S is demoted to HIR resident for that it is kept in queue Q. At that

time next LIR bottom is chosen which is nearer from the bottom of stack S and all other HIR

bottom are removed one by one. Information of thus removed HIRs is available in queue Q if it

is a resident. Stack pruning is also conducted if the accessed block P is the bottom LIR because

the recent block is always moved to the top of stack S. Stack pruning decreases the size of the

stack hence the stack doesn’t keep track of outdated references.

3.3.2 Data Structure

The LIRS-WSR algorithm can be implemented by using two LRU lists LIRS stack and HIR

queue. Each node in the LIR list and HIR Q are implemented as a doubly linked list.

25

3.3.3 Algorithm

Algorithm 3.1 LIRS-WSR
INPUT: Pages
OUTPUT: Miss rate, hit rate etc.

1: Start
2: Read new page
3: if page is in Stack S then
4: if If page is LIR page then
5: Page hit LIR page
6: Clear cold flag, i.e. cold=0
7: Move the page to the head of Stack, S
8: if If the page is at bottom of S then
9: Prune the Stack, S

10: end if
11: else if Page is HIR then
12: if Page is resident HIR then
13: Page hit, HIR resident page
14: Move the page to the head of Stack, making it LIR
15: Clear cold flag i.e. cold=0
16: Remove the page from HIR list Q
17: while Stack’s bottom is dirty and not cold do
18: Move bottom page of Stack, S to the head of Stack, S
19: Set cold=1 for this page
20: Prune the Stack
21: end while
22: Move stack bottom to head of the HIR list, making it HIR
23: Prune the Stack
24: else
25: Page is non-resident HIR
26: Page miss
27: Remove Tail of HIR Q
28: Move it to the head of Stack S, making it LIR
29: Clear cold flag of the page
30: while Stack’s bottom is dirty and not cold do
31: Set the cold flag of bottom page, i.e. Cold=1
32: Move the page to the head of Stack S
33: Prune the Stack
34: end while
35: Move the bottom of Stack to head of the HIR queue Q
36: Prune the Stack
37: end if
38: end if
39: else if Page is in the HIR Q then
40: Page hit in HIR Queue
41: Move to the head of HIR, Q
42: Add to the head Stack S

26

Algorithm 3.1 LIRS-WSR (cont.)
43: else
44: Page miss occurs
45: if Free memory is available then
46: if Free memory is larger than HIR Limit then
47: Add page to the head of Stack S
48: Make it LIR page.
49: Decrease free memory by one
50: else
51: if Page is write then
52: Add the page to the head of Stack S
53: Make it LIR
54: while Stack’s bottom is dirty and not cold do
55: Move the bottom of Stack S to the head of Stack S
56: Set cold=1 for this page
57: Prune the Stack
58: end while
59: Move Stack bottom to head of the HIR list
60: Make this page resident HIR
61: Prune the Stack
62: Decrease free memory by one
63: else
64: Page is read
65: Add the page to head of queue Q
66: Add the page to the head of Stack
67: Decrease free memory by one
68: end if
69: end if
70: else
71: Memory is full
72: Remove tail of HIR queue Q
73: if Page is write then
74: Add the page to the head of Stack S
75: Make it LIR
76: while Stack’s bottom is dirty and not cold do
77: Move the bottom of Stack S to the head of Stack S
78: Set cold=1 for this page
79: Prune the Stack
80: end while
81: Move Stack bottom to head of the HIR list
82: Make this page resident HIR
83: Prune the Stack
84: else
85: Page is read
86: Add the page to head of Stack S
87: Add the page to the head of queue Q
88: end if
89: end if
90: end if
91: Stop

27

3.3.4 Flowchart

Start

Read page p

Is in stack?Yes No

Is LIR?

Is in HIR

Q?
Is fm==0?No

Move to the head of Q,

move to the head of

stack S

Yes

Clear cold, move

page to the head

of tack

Yes

Is page at stack

bottom?

Prune the stack

Is resident?No

Clear cold, move

page to the head of

stack, make it LIR,

remove this page

from HIR Q Clear cold, move

page to the head

of stack, make it

LIR, remove the

page from tail of

HIR Q

Yes

No

Yes

Remove the tail

of HIR Q

Is page write?

Yes

Add to the head of

stack and make it LIR

Is stack bottom

dirty and not cold?

No

fm>HIR_Limit?

No

Is page

write?

Yes

Add to the head of

stack and make it

LIR, free memory--

Yes

Add to the head

of stack and

make it LIR free

memory--

Stop

Yes

Set cold=1, move page

to the head of stack,

prune the stack

Move bottom of

stack to head of

Q, prune the stack

No

No

Add to the head

of Stack, add to

head HIR Q

No

Add to the head of stack,

add to the head of Q, free

memory--

Figure 3.4: Flowchart of LIRS-WSR Algorithm

3.3.5 Tracing

Size of LIRS: 3 Size of HIRS: 1 Cache Size: 3+1=3

Input References: 1,1 1,2 0,3 0,1 1,4 1,3 0,5 0,2 1,3 where 1 = write, 0 = read

Total Number of References: 9, Number of Distinct References: 5

28

Another page status: cold/hot, dirty/clean

5LIR Resident HIR Non-resident HIR

Figure 3.5: Symbols of LIRS-WSR tracing

1

Cold Dirty

LIR

LIRS Stack S HIR Queue Q

(a) State at Virtual Time 1
Accessing Page 1, 1 page miss, page fault occurred

12

Cold Dirty

LIR

Cold Dirty

LIR

LIRS Stack S HIR Queue Q

(b) State at Virtual Time 2
Accessing Page 1, 2 page miss, page fault occurred

123

Cold

Dirty LIR

Cold

Dirty LIR

Cold Clean

LIR

HIR Queue QLIRS Stack S

(c) State at Virtual Time 3
Accessing Page 0, 3 page miss, page fault occurred

Figure 3.6: Tracing of LIRS-WSR

29

231

Cold Dirty

LIR

Cold Clean

LIR

Hot Dirty

LIR

HIR Queue QLIRS Stack S

(d) State at Virtual Time 4
Accessing Page 0, 1 page hit occurred, Cleared cold

31

Cold Clean

LIR

Hot Dirty

LIR

2

Cold Dirty

HIR

LIRS Stack S HIR Queue Q

4

Cold Dirty

LIR

(e) State at Virtual Time 5
Accessing Page 1, 4 page miss, added to the head of the
stack, 2 is demoted to HIR Q, page fault

14

Hot Dirty

LIR

Cold Dirty

LIR

2

Cold Dirty

HIR

LIRS Stack S HIR Queue Q

3

Hot Dirty

LIR

(f) State at Virtual Time 6
Accessing Page 1, 3 Page hit, moved to the head of the
stack, Cleared cold

5 14

Hot Dirty

LIR

Cold Dirty

LIR

5

Cold Clean

HIR

LIRS Stack S HIR Queue Q

Hot Dirty

LIR

3

Cold Clean

HIR

(g) State at Virtual Time 7
Accessing Page 0, 5 page miss, page fault, added to the
head of stack and also in Q head, 2 is replaced, write
count=1

2

Cold Clean

HIR

HIR Queue QLIRS Stack S

Hot Dirty

LIR

Cold

Clean HIR

Cold

Clean HIR

52 3 1

Hot Dirty

LIR

4

Cold Dirty

LIR

(h) State at Virtual Time 8
Accessing Page 0, 2 page miss, page fault occurred,
added to the head of stack and also in Q head

Figure 3.6: Tracing of LIRS-WSR (cont.)

30

2

Cold Clean

HIR

HIR Queue QLIRS Stack S

Cold Clean

HIR

Cold Clean

HIR

Hot Dirty

LIR

23 5 1

Hot Dirty

LIR

4

Cold Dirty

LIR

(i) State at Virtual Time 9
Accessing Page 1, 3 page hit

Figure 3.6: Tracing of LIRS-WSR (cont.)
Total page faults = 6, Total page hits = 3 and Write counts = 1

3.4 CCF-LRU

HD HCHD CD CC CC CC

P1 P2 P3 P4 P5 P6 P7

Mixed LRU List Cold Clean LRU List

MRU LRU

HD Hot Dirty HC Hot Clean

CD Cold Dirty CC Cold Clean

Figure 3.7: An example of CCF-LRU

CCF-LRU [26] enhances the CF-LRU and LRU-WSR algorithms by further differentiating

clean pages into cold and hot ones. It uses the cold-detection mechanism of LRU-WSR to

classify the buffered pages into four classes, including cold clean pages, hot clean pages, cold

dirty pages, and hot dirty pages. As illustrated in Figure 3.7, the cold clean pages are stored

in a cold clean LRU list while other types of pages are held in the mixed LRU list. When a

replacement occurs, CCF-LRU always evicts cold clean pages first. If there are no cold clean

pages, cold dirty pages are preferentially chosen as the victim and the eviction of hot dirty pages

are delayed as long as possible. The relation of four classified buffer pages can be defined as

follows:

CCC < CCD < CHC < CHD (3.1)

Here, the CCC is the cost of the evicting cold clean page, the CCD is the cost of evicting cold

dirty page, the CHC is the cost of evicting hot clean page and the CHD is the cost of evicting hot

dirty page.

From the expression 3.1, we must reduce the number of evicting hot dirty page and hot clean

31

page as far as possible. If we want to improve the overall I/O performance for flash memory

based storage system. However, the LRU-WSR keeps cold clean pages in the buffer until they

are evicted, which not only lowers the hit ratio but also makes cold dirty page and hot clean

page evicted more quickly. Besides, it always evicts clean pages without considering their

access frequencies, which may lower the hit ratio. The main idea of the Cold Clean First (CCF)

strategy is described as follows:

1. It uses the cold-detection algorithm to judge whether the page is cold or hot;

2. It evicts cold clean page preferentially as possible, especially for clean page accessed

only once recently; and

3. If there is no cold clean page mentioned above, evicting cold dirty page instead of the hot

clean page.

3.4.1 Data Structure

The CCF-LRU algorithm can be implemented by using two LRU lists, Mixed LRU and Cold

Clean LRU list. These both lists have MRU and LRU and these both lists are implemented as

list interface.

32

3.4.2 Flowchart

Start

Read page p

and window

size

Is P is available in

buffer?

Page hit and move

P to the MRU of L
Page Miss

Stop

NoYes

Is buffer full?

Insert P at MRU

of CCL

Yes

No

Yes

Yes

No

Yes No

Is CCL empty?

Victim=LRU of

CCL
Victim=LRU of L

Is Victim cold? Return victim

Is victim

clean?

Set cold flag of victim,

remove victim from L and

insert victim to CCL

Set cold flag of victim and

move victim to MRU of L

If P is write?

No

No

Insert P at MRU

of L

Yes

Figure 3.8: Flowchart of CCF-LRU Algorithm

3.4.3 Tracing

Size of L: 2 Size of CCL: 2 Cache Size: 2+2=4

Input References: 1,1 1,2 0,3 0,1 1,4 1,3 0,5 0,2 1,3 where 1 = write, 0 = read

Total Number of References: 9, Number of Distinct References: 5

Another page status: cold/hot, dirty/clean

33

Cold Dirty Hot CleanCold CleanHot Dirty

Figure 3.9: Symbols of CCF-LRU tracing

1

Cold

Dirty

Mixed, L CCL

(a) State at Virtual Time 1
Accessing Page 1, 1 page miss, page fault occurred, in-
serted at MRU of Mixed

2

Cold

Dirty

Cold

Dirty

Mixed, L CCL

1

(b) State at Virtual Time 2
Accessing Page 1, 2 page miss, page fault occurred, in-
serted at MRU of Mixed

2

Cold

Dirty

Cold

Dirty

Mixed, L

3

Cold

Clean

CCL

1

(c) State at Virtual Time 3
Accessing Page 0, 3 page miss, page fault occurred, in-
serted at MRU of CCL

Figure 3.10: Tracing of CCF-LRU

34

1

Cold

Dirty

Hot

Clean

Mixed, L

3

Cold

Clean

CCL

2

(d) State at Virtual Time 4
Accessing Page 0, 1 page hit in Mixed, Moved to MRU,
Cleared cold

4

Hot

Clean

Cold

Dirty

Mixed, L

3

Cold

Clean

CCL

1

(e) State at Virtual Time 5
Accessing Page 1, 4 page miss, 4 is added to the MRU
of the Mixed, 2 is replaced, write count=1, page fault
occurred

3

Cold

Dirty

Hot

Dirty

Mixed, L

1

Cold

Clean

CCL

4

(f) State at Virtual Time 6
Accessing Page 1, 3 Page hit in CCL, Cleared cold and
moved to MRU of L

3

Cold

Dirty

Hot

Dirty

Mixed, L

5

Cold

Clean

CCL

4 1

Cold

Clean

(g) State at Virtual Time 7
Accessing Page 0, 5 page miss, page fault, inserted at
MRU of CCL

Figure 3.10: Tracing of CCF-LRU (cont.)

35

3

Cold

Dirty

Hot

Dirty

Mixed, L

2

Cold

Clean

Cold

Clean

CCL

4 5

(h) State at Virtual Time 8
Accessing Page 0, 2 page miss, page fault occurred, ,
inserted at MRU of CCL

3

Cold

Dirty

Hot

Dirty

Mixed, L

2

Cold

Clean

Cold

Clean

CCL

4 5

(i) State at Virtual Time 9
Accessing Page 1, 3 page hit in Mixed

Figure 3.10: Tracing of CCF-LRU (cont.)
Total page faults = 6, Total page hits = 3 and Write counts = 1

36

3.4.4 Algorithm

Algorithm 3.2 CCF-LRU
INPUT: Pages
OUTPUT: Miss rate, hit rate etc.

1: Start
2: Read new page
3: if Page is in CCL then
4: Page hit in CCL
5: if Page is write then
6: Increase Write Request by 1
7: Set clean flag false i.e. clean=0
8: end if
9: Clear cold flag, i.e. cold=0

10: Move the page to the MRU of L
11: else if Page is in L then
12: Page hit in L
13: if Page is write then
14: Increase Write Request by 1
15: Set clean flag false i.e. clean=0
16: else
17: Set clean flag true i.e. clean=1
18: end if
19: Clear cold flag of page, i.e. cold=0
20: Move page to the MRU position in L
21: else
22: Page miss occurs
23: if Page is read then
24: if Free memory available in CCL then
25: Insert page to MRU of CCL
26: Set cold flag true i.e. cold=1
27: Set clean flag true i.e. clean=1
28: else
29: Remove page from LRU of CCL
30: Insert page to MRU of CCL
31: Set cold flag true i.e. cold=1
32: Set clean flag true i.e. clean=1
33: end if
34: else
35: Increase Write Request by 1
36: if Free memory available in L then
37: Insert page to MRU of L
38: Set cold flag i.e. cold=1
39: Set clean flag false i.e. clean=0
40: else
41: for Each page from Tail to head of L do
42: Victim=the LRU page in L

37

Algorithm 3.2 CCF-LRU (cont.)
43: if Cold flag of victim is set then
44: Return victim
45: else if Victim is clean page then
46: Set the cold flag of victim
47: Remove victim from L
48: Insert victim into CCL’s MRU position
49: else
50: Set cold flag of victim
51: Move victim to the MRU position in L
52: CALL AGAIN CCF-LRU
53: end if
54: end for
55: if If victim is not clean then
56: Increase Write Count by 1
57: end if
58: Remove victim
59: Insert page into MRU of L
60: Set cold flag i.e. cold=1
61: Set clean flag false i.e. clean=0
62: end if
63: end if
64: end if
65: Stop

38

Chapter 4

RESULTS, ANALYSIS AND

COMPARISONS

4.1 Testing

Each workload is tested in LIRS-WSR and CCF-LRU simulator by varying the cache size from

512 to 18432. In the case of LIRS-WSR algorithms HIR, LIR partition is maintained as 1%

and 99% of cache size. For CCF-LRU parameter WindowsSize is set 0.5 of the cache size for

all Workloads.

4.1.1 Test Result of Workload 1 (Trace with Random Access)

No. of References = 100000, No. of Distinct Reference = 43247

No. of Write References = 49974

39

Table 4.1: Test Result of Workload 1

Buffer Size LIRS-WSR CCF-LRU

Page Fault Miss Rate Hit Rate Write Count Page Fault Miss Rate Hit Rate Write Count

512 98955 98.2 1.8 48950 99011 98.3 1.7 49248
1024 97926 96.3 3.7 47959 97939 96.4 3.6 48450
2048 95847 92.7 7.3 46008 95893 92.8 7.2 46987
4096 91892 85.7 14.3 42538 91880 86.7 14.3 44273
6144 87951 78.8 21.2 39344 87931 78.7 21.3 41700
8192 84103 72.0 28.0 36482 84236 72.2 27.8 39439
9216 82253 68.7 31.3 35180 82440 69.1 30.9 38352
10240 80421 65.5 34.5 33950 80628 65.9 34.1 37263
12288 76800 59.1 40.9 31694 77083 59.6 40.4 35176
14336 73358 53.1 46.9 29706 73771 53.8 46.2 33178
16384 70076 47.3 52.7 27996 70666 48.3 51.7 31405
18432 66834 41.6 58.4 26446 67581 42.9 57.1 29604

4.1.2 Test Result of Workload 2 (Trace with Read-Most Access)

No. of References = 100000, No. of Distinct Reference = 43212

No. of Write References = 9919

Table 4.2: Test Result of Workload 2

Buffer Size LIRS-WSR CCF-LRU

Page Fault Miss Rate Hit Rate Write Count Page Fault Miss Rate Hit Rate Write Count

512 98948 98.1 1.9 9078 98956 98.2 1.8 9197
1024 97954 96.4 3.6 8505 97907 96.3 3.7 8620
2048 95943 92.9 7.1 7680 95961 92.9 7.1 7701
4096 91877 85.7 14.3 6547 92169 86.2 13.8 6457
6144 87870 78.6 21.4 5832 88399 79.6 20.4 5599
8192 84144 72.1 27.9 5339 84936 73.5 26.5 5021
9216 82330 68.9 31.1 5135 83147 70.3 29.7 4754
10240 80491 65.6 34.4 4973 81429 67.3 32.7 4539
12288 76953 59.4 40.6 4706 78165 61.5 38.5 4138
14336 73402 53.2 46.8 4527 75029 56.0 44.0 3803
16384 70137 47.4 52.6 4403 71930 50.6 49.4 3525
18432 68828 41.6 58.4 4334 68975 45.4 54.6 3284

4.1.3 Test Result of Workload 3 (Trace with Write-Most Access)

No. of References = 100000, No. of Distinct Reference = 43182

No. of Write References = 89145

40

Table 4.3: Test Result of Workload 3

Buffer Size LIRS-WSR CCF-LRU

Page Fault Miss Rate Hit Rate Write Count Page Fault Miss Rate Hit Rate Write Count

512 98933 98.1 1.9 88084 98960 98.2 1.8 88356
1024 97859 96.2 3.8 87018 97936 96.4 3.6 87574
2048 95831 92.7 7.3 84999 95954 92.9 7.1 86014
4096 91903 85.7 14.3 81111 92218 86.3 13.7 82995
6144 88066 79.0 21.0 77380 88825 80.3 19.7 80043
8192 84211 72.2 27.8 73621 86050 75.4 24.6 77176
9216 82390 69.0 31.0 71869 84939 73.5 26.5 75730
10240 80578 65.8 34.2 70126 83978 71.8 28.2 74265
12288 77008 59.5 40.5 66720 82126 68.5 31.5 71420
14336 73484 53.3 46.7 63398 80381 65.5 34.5 68677
16384 70197 47.5 52.5 60300 78573 62.3 37.7 65882
18432 66856 41.7 58.3 57298 76801 59.2 40.8 63125

4.1.4 Test Result of Workload 4 (Zipf Trace)

No. of References = 500000, No. of Distinct References = 47023

No. of Write References = 244790

Table 4.4: Test Result of Workload 4

Buffer Size LIRS-WSR CCF-LRU

Page Fault Miss Rate Hit Rate Write Count Page Fault Miss Rate Hit Rate Write Count

512 361423 69.4 30.6 163145 356228 68.3 31.7 176669
1024 327682 62.0 38.0 144910 321647 60.6 39.4 160260
2048 288224 53.2 46.8 123920 282157 52.9 48.1 141871
4096 242417 43.1 56.9 100009 237893 42.1 57.9 121455
6144 212645 36.6 63.4 84817 209385 35.9 64.1 108352
8192 189960 31.6 68.4 73661 187861 31.1 68.9 98409
9216 180187 29.4 70.6 68958 178954 29.1 70.9 94140
10240 171186 27.4 72.6 64718 170853 27.3 72.7 90437
12288 155797 24.0 76.0 57657 156432 24.1 75.9 83595
14336 142185 21.0 79.0 51627 143880 21.4 78.6 77632
16384 130416 18.4 81.6 46630 132570 18.9 81.1 72044
18432 119561 16.0 84.0 42206 122647 16.7 83.3 67197

4.2 Analysis and Comparisons

All the results obtained from simulation is analyzed by drawing different graphs. Hit rate and

write count are used as criteria for analyzing their goodness.

41

512 1024 2048 4096 6144 8192 9216 10240 12288 14336 16384 18432

Buffer Size

0

10

20

30

40

50

60
H

it
 R

a
te

LIRS-WSR

CCF-LRU

Figure 4.1: Graph of Hit Rate for Workload 1

4.2.1 Hit Rate Analysis

The graph of Figures 4.1, 4.2, 4.3, and 4.4 show that the LIRS-WSR algorithm is better than the

CCF-LRU algorithm since LIRS-WSR has higher hit rate for different cache sizes. In Figure

4.1 and Figure 4.2 for workloads random and read-most access type traces the hit rates of

algorithms are not much different because of the uniform distribution of page references. In

512 1024 2048 4096 6144 8192 9216 10240 12288 14336 16384 18432

Buffer Size

0

10

20

30

40

50

60

H
it

 R
a
te

LIRS-WSR

CCF-LRU

Figure 4.2: Graph of Hit Rate for Workload 2

these workloads, there is not a clear distinction between hot and cold pages as reference locality

is not high. Despite the nature of page references in these workloads, LIRS-WSR has better

hit rate as it adapts the changes in page references pattern dynamically. LIRS-WSR always

treats pages with the write request as LIR pages or hot pages. The hit rate increases with large

42

buffer size because buffer can hold more pages that increase page hit. The graph of Figure

512 1024 2048 4096 6144 8192 9216 10240 12288 14336 16384 18432

Buffer Size

0

10

20

30

40

50

60

H
it

 R
a
te

LIRS-WSR

CCF-LRU

Figure 4.3: Graph of Hit Rate for Workload 3

4.3 shows a significant difference in hit rate. This is due to high reference locality of page

references in write-most trace where 90% of pages are referenced as write. LIRS-WSR adapts

more effectively to distinguish hot and cold pages in this workload. So, the hit rate is much

higher than that of CCF-LRU. As a maximum value, LIRS-WSR has up to 17.5% higher hit

512 1024 2048 4096 6144 8192 9216 10240 12288 14336 16384 18432

Buffer Size

0

10

20

30

40

50

60

70

80

90

H
it

 R
a
te

LIRS-WSR

CCF-LRU

Figure 4.4: Graph of Hit Rate for Workload 4

rate than CCF-LRU algorithm for workload 3 (write-most trace) and in workload 4, the hit rate

of LIRS-WSR increases for larger buffer. The hit rate of CCF-LRU is larger when buffer size

is smaller. As minimum, LIRS-WSR has upto 0.7% higher hit rate than CCF-LRU for larger

buffer. LIRS-WSR has higher hit rate than CCF-LRU in the case of high reference locality

workloads.

43

4.2.2 Write Count Analysis

512 1024 2048 4096 6144 8192 9216 10240 12288 14336 16384 18432

Buffer Size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

W
ri

te
 C

o
u

n
t

10
4

LIRS-WSR

CCF-LRU

Figure 4.5: Graph of Write Count for Workload 1

The graph in Figures 4.5, 4.6, 4.7, and 4.8 show the number of pages propagated to flash mem-

ory. The number of pages flushed to flash memory is write count. The number is obtained by

counting the eviction of page references with write request during page replacement event. At

the end of simulation all the dirty pages in the buffer are also added to the count to get the exact

write count. From the above graphs, it is clear that LIRS-WSR has smaller write count for the

three workloads(random, write-most and zipf) used in the simulation. Workload 1 has 50%

512 1024 2048 4096 6144 8192 9216 10240 12288 14336 16384 18432

Buffer Size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

W
ri

te
 C

o
u

n
t

LIRS-WSR

CCF-LRU

Figure 4.6: Graph of Write Count for Workload 2

pages as write pages which are uniformly distributed. For smaller buffer size, CCF-LRU has

slightly higher write count than LIRS-WSR. This is because there is only half buffer (Mixed

44

LRU) list holds wirte pages, dirty pages are evicted faster in CCF-LRU than LIRS-WSR. In

LIRS-WSR dirty pages are kept in LIRS Stack as LIR pages and due to WSR policy, they are

kept for longer time. Workload 2 has read-most access pattern in page references with 10%

512 1024 2048 4096 6144 8192 9216 10240 12288 14336 16384 18432

Buffer Size

0

1

2

3

4

5

6

7

8

9

W
ri

te
 C

o
u

n
t

10
4

LIRS-WSR

CCF-LRU

Figure 4.7: Graph of Write Count for Workload 3

writes and 90% reads. For workload 2, for smaller buffer, both algorithm has slightly differ-

ence in write count and LIRS-WSR outperforms. As buffer increases, CCF-LRU outperforms

LIRS-WSR for read-most trace. Workload 3 has 90% writes and only 10% reads in page ref-

512 1024 2048 4096 6144 8192 9216 10240 12288 14336 16384 18432

Buffer Size

0

2

4

6

8

10

12

14

16

18

W
ri

te
 C

o
u

n
t

10
4

LIRS-WSR

CCF-LRU

Figure 4.8: Graph of Write Count for Workload 4

erences. In this case, LIRS-WSR works better for all buffer sizes. There is a large number of

write pages in trace, CCF-LRU cannot accommodate all dirty pages in Mixed LIRS set and

evicts dirty pages as well continuously. LIRS-WSR adapts reference pattern so it has better

output.

45

Workload 4 zipf trace has 50%/50% read and write references but has high reference locality of

80% page references are references to 20% of pages. LIRS-WSR adapts changes in reference

pattern and locality. So it has much less write count than CCF-LRU for all buffer sizes.

For write-most trace (Workload 3) write count is decreased up to 9.23% by LIRS-WSR with a

comparison to CCF-LRU algorithm.

For zipf trace (workload 4) LIRS-WSR decreased write count up to 37.17% with a comparison

to CCF-LRU algorithm. This is the largest gap between the value of write count of these two

algorithms. Thus, LIRS-WSR minimizes write counts significantly when reference locality is

high.

46

Chapter 5

CONCLUSION

5.1 Conclusion

Flash memory has become an alternative to the magnetic disks, which brings new challenges

to the traditional disk-based system. To efficiently support the characteristics of flash storage

devices, traditional buffering approaches need to be revised to take into account the imbalance

I/O property of flash memory. LIRS-WSR uses delayed eviction strategy when the dirty page

is to be replaced. It uses recency and little bit frequency information in replacement policy.

CCF-LRU captures frequency and recency of page references by using two LRU queues to

classify all the buffer pages into a Mixed and a cold clean set.

From the simulation of these two algorithms for varying buffer size, it is found that the LIRS-WSR

outperforms CCF-LRU for hit rate and write count. Especially, when workload has high ref-

erence locality, LIRS-WSR has significantly superior performance than CCF-LRU in terms

of both hit rate and write count. This is because of LIRS-WSR’s good adaptive technique to

handle changes in reference patterns. But in case of workload 2 (read-most trace) CCF-LRU

performs better than LIRS-WSR for write counts.

For uniformly distributed workloads, the difference in hit rates of CCF-LRU and LIRS-WSR

is comparatively small. LIRS-WSR leads CCF-LRU in hit rate by a value up to 3.8%. For

high reference locality workloads LIRS-WSR has significantly higher hit rate up to 17.5% in

comparison to CCF-LRU.

The CCF-LRU may perform better in write count for uniformly distributed locality workloads

when the buffer size is highly smaller in comparison to the size of workload as it treats all

47

write pages as hot pages and delays eviction. For larger buffer size and high write reference

locality workloads, LIRS-WSR outperforms CCF-LRU in write count for workloads random,

write-most and zipf. It seems that in the case of uniformly distributed write-most access type

workload, write count is decreased up to 9.23% by LIRS-WSR, but for high reference locality

workload LIRS-WSR minimizes write count up to 37.17% with a comparison to CCF-LRU

algorithm. Thus, LIRS-WSR minimizes write counts significantly when reference locality is

high.

5.2 Limitations

In this work, the size of HIR block is chosen 1% of total buffer size in LIRS algorithm and

in CCF-LRU algorithm Mixed LRU list and Cold Clean LRU list are divided into two half of

buffer size. The dynamic approach can be used to self-tune these parameters. Further research

can be done to find the optimal value of these parameters for different workloads. In addition

to this, in this work, only four different memory traces have been used for simulation purpose.

Three of which are of uniform reference patterns and last one is with “20/80” reference locality.

These are the limitations of this work. This work can be further extended by using a variety of

real memory trace with different reference locality.

48

References

[1] L.-P. Chang and T.-W. Kuo, “Efficient management for large-scale flash-memory storage

systems with resource conservation,” Trans. Storage, vol. 1, pp. 381–418, Nov. 2005.

[2] N. Toshiba, “vs. nor flash memory technology overview,” tech. rep., Technical Report,

2006.

[3] H. Jung, K. Yoon, H. Shim, S. Park, S. Kang, and J. Cha, “Lirs-wsr: Integration of lirs and

writes sequence reordering for flash memory,” in Proceedings of the 2007 International

Conference on Computational Science and Its Applications - Volume Part I, ICCSA’07,

(Berlin, Heidelberg), pp. 224–237, Springer-Verlag, 2007.

[4] H.-j. Kim and S.-g. Lee, “A new flash memory management for flash storage system,”

in 23rd International Computer Software and Applications Conference, COMPSAC ’99,

(Washington, DC, USA), pp. 284–289, IEEE Computer Society, 1999.

[5] E. Gal and S. Toledo, “Mapping structures for flash memories: Techniques and open prob-

lems,” in Proceedings of the IEEE International Conference on Software - Science, Tech-

nology & Engineering, SWSTE ’05, (Washington, DC, USA), pp. 83–92, IEEE Computer

Society, 2005.

[6] A. Silberschatz, P. B. Galvin, G. Gagne, et al., “Memory management strategies,” Oper-

ating System Concept, 8th ed. Wiley Student Edition, pp. 315–417, 2010.

[7] S. Jiang and X. Zhang, “Lirs: An efficient low inter-reference recency set replacement

policy to improve buffer cache performance,” SIGMETRICS Perform. Eval. Rev., vol. 30,

pp. 31–42, June 2002.

49

[8] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead replacement cache,”

in Proceedings of the 2Nd USENIX Conference on File and Storage Technologies, FAST

’03, (Berkeley, CA, USA), pp. 115–130, USENIX Association, 2003.

[9] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee, “Cflru: A replacement algorithm

for flash memory,” in Proceedings of the 2006 International Conference on Compilers,

Architecture and Synthesis for Embedded Systems, CASES ’06, (New York, NY, USA),

pp. 234–241, ACM, 2006.

[10] P. Jin, Y. Ou, T. Härder, and Z. Li, “Ad-lru: An efficient buffer replacement algorithm for

flash-based databases,” Data Knowl. Eng., vol. 72, pp. 83–102, Feb. 2012.

[11] H. Paajanen, “Page replacement in operating system memory management,” Master’s

thesis, Department of Mathematical Information Technology, University of Jyväskylä,

Jyväskylä, Finland, October 2007.

[12] B. B. Rawal, “Quantitive Evaluation of Buffer Replacement Algorithms for Flash Based

Systems,” Master’s thesis, Central Department of Computer Science and Information

Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal, 2014.

[13] A. S. Tanenbaum, Modern Operating Systems. Upper Saddle River, NJ, USA: Prentice

Hall Press, 3rd ed., 2007.

[14] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, “On the existence

of a spectrum of policies that subsumes the least recently used (lru) and least frequently

used (lfu) policies,” SIGMETRICS Perform. Eval. Rev., vol. 27, pp. 134–143, May 1999.

[15] Y. Smaragdakis, S. Kaplan, and P. Wilson, “Eelru: Simple and effective adaptive page

replacement,” SIGMETRICS Perform. Eval. Rev., vol. 27, pp. 122–133, May 1999.

[16] D. Lee, J. Choi, J. hun Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, “Lrfu (least

recently/frequently used) replacement policy: A spectrum of block replacement policies,”

1996.

[17] G. P. Joshi, “Calculation Of Control Parameter λ That Results Into Optimal Performance

In Terms Of Page Fault Rate In The Algorithm Least Recently Frequently Used(LRFU)

For Page Replacement,” Master’s thesis, Central Department of Computer Science and

Information Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal, 2007.

50

[18] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The lru-k page replacement algorithm for

database disk buffering,” SIGMOD Rec., vol. 22, pp. 297–306, June 1993.

[19] T. Johnson and D. Shasha, “2q: A low overhead high performance buffer management re-

placement algorithm,” in Proceedings of the 20th International Conference on Very Large

Data Bases, VLDB ’94, (San Francisco, CA, USA), pp. 439–450, Morgan Kaufmann

Publishers Inc., 1994.

[20] F. Corbató, “Festschrift: In honor of pm morse, chapter a paging experiment with the

multics system, pages 217–228,” 1969.

[21] S. Jiang, F. Chen, and X. Zhang, “Clock-pro: An effective improvement of the clock

replacement,” in Proceedings of the Annual Conference on USENIX Annual Technical

Conference, ATEC ’05, (Berkeley, CA, USA), pp. 323–336, USENIX Association, April

2005.

[22] S. Bansal and D. S. Modha, “Car: Clock with adaptive replacement,” in Proceedings of

the 3rd USENIX Conference on File and Storage Technologies, FAST ’04, (Berkeley, CA,

USA), pp. 187–200, USENIX Association, 2004.

[23] A. J. Smith, “Sequentiality and prefetching in database systems,” ACM Trans. Database

Syst., vol. 3, pp. 223–247, Sept. 1978.

[24] Y. Ou, T. Härder, and P. Jin, “Cfdc: A flash-aware replacement policy for database buffer

management,” in Proceedings of the Fifth International Workshop on Data Management

on New Hardware, DaMoN ’09, (New York, NY, USA), pp. 15–20, ACM, 2009.

[25] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, “Lru-wsr: Integration of lru and writes

sequence reordering for flash memory,” IEEE Trans. on Consum. Electron., vol. 54,

pp. 1215–1223, Aug. 2008.

[26] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, “Ccf-lru: A new buffer replacement algorithm for

flash memory,” IEEE Trans. on Consum. Electron., vol. 55, pp. 1351–1359, Aug. 2009.

[27] M. Singh, “Understanding research methodology,” 1991.

51

Bibliography

• B. Saud, “Sensitivity Analysis of Cache Partition in Clock-Pro Page Replacement and its

Comparison with Adaptive Clock-Pro,” Master’s thesis, Central Department of Computer

Science and Information Technology, Tribhuvan University Kirtipur, Kathmandu, Nepal,

April 2014.

• B. Subedi, “An Evaluation of Page Replacement Algorithm Based on Low Inter-reference

Recency Set on Weak Locality Workloads,” Master’s thesis, Central Department of Com-

puter Science and Information Technology, Tribhuvan University Kirtipur, Kathmandu,

Nepal, March 2012.

• D. S. Mahara, “A Comparative Evaluation of Buffer Replacement Algorithms LIRS-

WSR and AD-LRU for Flash Memory Based Systems,” Master’s thesis, Central Depart-

ment of Computer Science and Information Technology, Tribhuvan University Kirtipur,

Kathmandu, Nepal, March 2014.

52

Appendix A

Sample Input Traces

A.1 Random Input Trace

1,8575 0,17754 0,33289 0,3838 0,19942 1,25113 1,35145 1,1939 0,40780 0,12831 0,31724

1,37162 1,861 1,35912 0,39216 1,10863 0,15454 0,32425 0,42141 1,34769 0,29923 1,3050

0,4043 0,39113 1,11686 1,25837 0,4941 0,7882 0,39262 1,32631 0,36490 1,11934 1,8851

1,16962 0,37665 1,23980 0,41727 0,15074 1,19029 1,1750 0,49554 1,18797 1,6747 0,31276

1,786 1,42798 0,30971 0,42594 1,49503 0,23075 1,8717 1,13521 1,988 0,22467 1,12586 1,45284

1,39329 0,45058 0,14795 0,21120 0,7786 1,43211 0,47655 0,42213 0,919 0,603 0,4844 0,44923

1,29324 0,26292 1,31526 1,38097 1,39819 0,30117 1,14208 1,27844 1,8361 1,16455 1,5699

0,10670 1,1066 0,9039 1,6477 1,41170 0,23504 1,32354 0,14280 1,36795 1,8732 1,46002

1,4880 1,5637 1,21680 1,3496 1,3220 0,13282 1,42670 0,11669 0,2716 1,49749 0,12437 0,42550

0,27038 0,26790 1,44095 1,25674 0,4498 1,32206 0,33123 0,9846 0,46190 0,20089 0,14060

1,28875 1,16434 1,12575 1,47687 1,41433 0,16610 0,3411 1,23633 1,17429 0,49681 1,25625

1,34155 0,33804 0,21089 0,16647 1,3104 0,3843 1,7142 0,30193 0,12695 1,28453 0,9115

0,25532 0,47722 1,47868 1,49752 0,6476 1,41825 1,7631 0,14127 0,29127 1,12805 0,48855

1,33911 0,41079 1,25483 1,39430 0,1037 0,3297 0,16599 1,36036 0,15578 0,10091 1,25578

0,23037 0,24073 1,16386 0,15490 1,1048 0,19682 0,8798 0,26493 0,48889 1,7791 1,35987

1,16638 1,45825 1,38057 0,30566 0,48228 0,38949 1,47502 0,26137 1,22920 1,32430 1,7944

1,35589 1,40867 1,47773 0,46838 1,44616 1,39286 1,39175 1,20480 1,22293 0,20389 0,23900

0,18555 0,46427 0,8516 1,49886 0,10679 0,9400 1,24467 0,3709 0,411 0,25540 0,22153 1,3954

0,23179 0,9759 1,33020 0,2711 1,42697 1,34063 1,22716 1,23599 0,25436 1,22036 . . .

53

A.2 Read-most Input Trace

0,47138 0,8885 0,46509 0,30725 1,15160 0,2460 0,9807 0,46791 1,5087 0,11237 0,22932

0,37902 0,6713 0,34922 0,4119 0,42689 0,25737 0,39402 0,9355 0,10606 0,641 0,27320 0,38193

0,21972 0,42518 0,10783 0,28314 1,1900 0,13867 0,39219 0,46605 1,38017 0,46494 0,23527

0,38630 1,21176 0,293 0,12907 0,39277 0,40610 0,7266 1,41366 0,30769 1,8749 1,10029

0,1320 0,46614 0,41918 0,26128 0,41673 0,19547 0,48693 0,37972 0,38947 0,15954 0,3438

0,18472 0,16481 0,6566 0,9291 0,43502 1,33032 0,3183 0,19948 0,6053 1,38512 0,46694

0,33131 0,29974 0,19584 0,49468 1,24278 0,17376 0,46130 0,4161 0,3133 0,45468 0,35567

0,36470 0,24196 1,34021 0,39449 0,18771 0,19982 0,26021 0,17350 0,44669 0,11232 0,2877

0,14913 0,26197 0,37578 0,44932 0,27057 0,8577 0,21545 1,19614 0,26010 0,31719 0,21978

0,9246 0,32690 0,35125 0,29523 0,34981 1,3135 1,2971 0,1054 0,15836 0,29720 0,39483

0,42668 0,23341 1,7058 1,37083 0,5836 0,39234 0,30664 0,47423 0,48384 0,49832 0,47732

0,6181 0,28049 0,20673 0,14815 1,16584 0,35416 0,15178 1,22743 0,37824 0,20809 0,43815

0,7992 1,22767 1,981 0,6349 0,22302 0,1909 0,37810 0,24271 0,27349 0,21940 0,11289 0,3186

0,14000 0,38546 1,20359 0,34039 0,3939 0,3492 0,44098 0,2151 0,17422 0,30562 1,24662

0,23074 0,26344 1,31895 0,6416 0,48410 0,15522 0,14390 0,34163 0,13073 0,19750 0,985

0,48011 1,18012 0,11608 0,14481 0,34997 0,22648 0,26672 0,15980 0,49335 1,34079 0,11814

0,31534 0,20259 0,11874 0,45185 1,20792 0,39186 0,18681 0,24097 0,8582 0,26107 1,11335

0,33248 0,31662 0,47539 0,2856 0,41237 0,19933 0,10902 1,6574 0,14599 0,39656 0,15879

0,9645 0,32760 0,11311 0,14258 0,38921 0,47086 0,24615 0,36799 1,23373 0,30556 0,6997

0,5647 0,22385 0,14890 0,5537 0,11311 0,18829 0,9608 0,44776 0,35106 0,21597 0,18245

0,25921 0,19819 0,41022 0,2924 0,33953 0,9818 0,21029 0,1955 0,26130 0,48683 0,16144

0,42243 0,1071 0,48155 0,17289 0,24699 1,19033 0,18424 0,39192 0,45975 0,949 0,25811

0,35775 0,28294 0,7946 0,2748 0,36907 0,5078 0,27022 1,14669 0,37419 0,12382 0,8955

0,43073 0,4139 0,37292 0,31386 0,15131 0,44501 0,40518 0,6139 0,49892 0,22521 0,9057

1,43638 0,45879 0,30391 0,14690 0,25367 0,10125 0,24894 0,41810 0,49555 0,38776 0,16140

0,49637 0,36102 0,13534 0,4838 1,33623 0,19639 0,33611 1,38969 0,34042 0,32887 0,13925

0,12100 0,10997 0,8528 0,11794 0,23601 0,15213 0,29736 0,47737 0,15336 0,16109 0,10809

0,36945 0,49102 0,40775 1,2132 0,12292 1,28002 0,29787 0,12657 0,27496 0,11586 0,35950

0,19189 0,7309 0,16707 0,45708 0,43469 0,32897 0,21864 0,18648 0,36112 0,29233 0,18148

0,37425 0,21023 0,8947 0,30022 0,43937 0,18352 0,32213 0,26617 0,6472 0,9465 . . .

54

A.3 Write-most Input Trace

1,12527 1,1216 1,698 1,35286 1,39722 1,25887 1,45028 1,47558 1,44966 1,10018 1,41052

0,8011 1,42731 1,9714 1,39263 1,40196 1,6269 1,39623 1,33031 1,1853 1,29107 1,5242 1,1010

1,28122 1,35606 1,27792 1,19845 1,24155 1,20899 1,37819 1,27592 1,1272 1,2536 1,35733

1,33645 1,37360 1,13287 1,35073 1,24973 1,31865 1,7424 1,5993 1,8751 1,2237 1,39556

1,8440 1,35811 1,25015 1,42880 1,12603 1,8230 1,45262 1,10924 0,40802 1,24112 1,38237

1,31304 1,5412 1,43801 1,29898 1,10638 1,47683 1,4487 1,44810 1,8571 1,9911 1,33896

0,35169 1,35950 1,9344 1,2859 1,32483 1,2158 1,46525 1,32777 1,20380 0,25035 1,5188

1,6797 0,24879 1,8889 1,19975 1,8644 1,8494 1,17945 1,5175 1,29078 1,36322 1,46605 0,3722

1,23254 1,35573 1,44707 1,16353 1,23944 1,24724 0,40235 1,9453 1,33001 1,23185 1,19468

1,4818 1,18662 1,14189 0,1378 1,16011 1,18092 1,36090 1,37183 1,4364 1,33538 1,41008

1,19253 1,34763 1,21453 1,5052 1,38178 1,39783 1,33887 1,46310 1,2396 1,41563 1,18490

1,18554 1,46076 1,3812 1,46712 1,22442 0,15937 1,38230 1,45473 1,6945 1,24479 1,9632

1,21724 1,12421 1,20451 1,35388 0,980 1,4486 1,47436 1,44968 1,42560 1,34505 1,42484

1,8868 1,13237 1,45460 1,40381 1,46871 1,18937 1,1389 1,22092 1,20688 1,30869 0,45818

1,47306 1,3497 1,1803 1,6096 1,24012 1,43783 1,7630 1,24744 1,47367 1,42187 1,43951

1,21302 1,26076 1,12092 0,38106 1,21666 1,45645 1,12638 1,5712 0,14779 1,33647 1,29306

1,20191 1,33315 1,26443 1,11996 1,28139 1,18374 1,24340 1,26206 1,6606 1,1590 1,16723

1,48509 1,29078 1,36414 1,5498 0,24528 1,43092 1,11633 1,27217 1,10035 1,5380 1,2269

1,41075 1,7928 1,8105 1,3437 1,22547 1,45582 0,8817 1,38670 1,20172 1,30414 1,47214

1,19627 1,26446 1,40787 1,39687 1,3454 1,37369 1,30931 1,33101 1,18169 1,22790 1,11904

0,47052 1,3672 1,42585 1,9384 1,5275 1,13720 1,19348 1,49136 1,20843 1,19068 1,25883

1,16481 1,27189 0,29307 1,16008 1,45273 0,9839 1,38955 1,48500 1,48560 1,47897 1,37830

1,39217 1,9133 1,18904 0,10499 1,48972 0,42043 1,45152 1,1636 1,12524 1,39143 1,37057

1,9006 1,47238 1,45840 1,5534 1,45368 0,28865 1,6060 1,41228 1,31789 1,48175 1,22391

1,23196 1,34069 0,27033 1,11358 1,21846 1,38558 1,36046 1,4791 1,26938 1,20824 1,4823

1,48716 1,44135 1,28505 1,49252 1,44939 1,36081 1,29232 0,30656 0,47723 1,48222 1,35146

1,878 1,18288 1,8098 1,31077 1,8318 0,21097 0,7152 0,13565 1,46677 1,1957 1,31401 1,39787

1,27588 1,17227 1,31164 1,47753 1,12432 1,2839 1,47863 1,26882 1,6630 1,21134 1,19651

1,27453 1,14355 1,10102 1,29343 0,7942 1,1493 1,28572 0,38982 1,9057 1,15971 1,890 1,41953

1,49738 1,23491 1,31693 1,33812 1,32832 1,9872 0,9447 1,3797 0,32651 1,40169 . . .

55

A.4 Zipf Input Trace

1,8550 0,3609 1,654 1,17913 0,145 0,2550 1,5970 0,2461 1,33806 0,17 0,1 0,17 0,1,370 0,159

0,10290 0,54 0,4 1,40078 0,481 0,14300 0,1 0,16 0,18 1,1167 0,7 1,27473 0,47 0,127 0,286

0,35 1,1 0,63 0,15 0,17 0,574 1,1815 0,173 0,6 0,9172 0,5565 1,69 1,7723 0,39491 0,2020

1,1 0,16 1,17217 1,3717 1,3294 1,31 1,40143 0,49198 0,15221 0,191 0,49491 1,2842 1,2797

0,25825 0,7165 1,40 0,3 1,47 0,6 0,8631 0,7375 0,9649 0,3530 0,21 1,508 1,8 0,16 1,20349

1,4506 1,279 1,111 0,1472 0,2768 0,36002 0,168 0,631 0,50 0,44415 1,800 0,1847 0,1353

0,115 0,28497 1,2611 0,697 1,1728 0,1 1,32 0,57 1,358 0,522 1,4 0,612 0,2599 1,2 1,5 0,47719

1,8 1,889 0,345 0,1136 0,242 1,10958 0,1178 0,17 1,3 1,20063 0,1992 0,4 1,7485 1,1406

0,168 1,87 1,602 0,1638 0,265 0,15042 1,42 0,16832 0,12 0,49373 0,2 1,2880 0,28 1,761 0,2

1,412 0,30 0,40 0,1244 0,146 1,9 0,30606 0,3 1,2 1,327 0,27188 0,29109 0,4 0,22156 0,145

1,11837 1,12173 1,41 0,49 0,11 1,1256 0,13969 1,18099 1,202 0,9684 0,31846 0,1303 1,5233

1,109 0,35427 0,29287 0,2080 1,74 0,303 1,34 1,4342 1,172 1,46482 0,4 1,30884 0,10994 0,1

1,36777 1,22311 0,4502 1,104 0,2 0,2258 0,26534 0,10 1,1693 1,15000 1,890 0,14941 1,5200

1,89 0,610 0,790 1,24567 0,2514 0,9 1,55 0,39162 1,1007 1,117 1,1203 1,6 1,34659 1,13

0,21797 1,6 0,123 1,2306 0,431 0,763 0,205 0,25 0,5509 0,663 1,920 0,1340 0,36399 1,179

0,17631 0,2 0,96 1,624 0,549 0,1383 1,3269 0,114 1,26 1,11056 0,37000 1,8808 1,39 1,10

0,1006 1,3 0,12883 1,592 1,4360 0,13 0,2387 1,4 0,183 0,1789 0,6300 1,207 1,33724 1,3747

0,23521 0,67 0,2285 0,8867 1,3101 0,33604 1,4 0,99 0,21 1,4084 1,105 1,19222 1,24966

0,18158 0,45453 0,329 1,13 1,625 0,33 0,45 0,2427 1,14065 0,37 1,213 1,14 1,42281 0,7631

0,275 0,204 1,9059 0,39832 0,9638 0,26 0,10692 1,22052 0,29487 1,1265 1,8160 1,10 1,232

0,30695 1,696 1,296 0,7309 0,3 0,45299 0,52 0,1 0,5550 0,16061 0,2100 0,7392 0,6111 0,28824

1,810 1,15492 1,534 0,21235 1,858 0,2 0,4657 1,1 1,4492 0,35641 0,12254 0,6213 1,9804

0,49110 1,31345 1,3 0,137 0,11385 1,2 1,2387 1,9581 0,1 0,9 1,19562 0,2436 1,14530 1,25

0,35087 1,650 0,5731 0,1481 0,437 1,97 0,8280 1,10875 1,422 0,791 1,9719 0,1 0,23043

0,22546 0,292 1,2 1,5320 0,5 1,10 1,83 0,3253 0,1128 1,6808 0,39912 1,5172 0,175 0,26391

0,679 0,3 1,27741 1,24082 1,3 0,692 0,8297 0,80 0,843 0,26940 0,2092 1,37 0,2655 1,38

1,2622 0,3115 1,23585 1,25069 1,1705 0,11 1,427 1,230 0,14530 0,788 0,27979 1,44389

1,2713 1,93 0,1 0,292 1,42296 0,1307 0,484 0,115 0,8 0,389 0,7576 1,36924 0,180 0,3128

0,27230 0,2 0,28 0,475 1,83 0,36531 1,8931 0,9726 1,2378 1,7889 1,1504 1,481 1,31 0,256

1,10779 1,6 0,64 0,17928 1,1031 0,3837 1,5605 0,145 0,3127 1,42369 1,548 1,12 0,5 . . .

56

	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	BACKGROUND AND INTRODUCTION
	Background
	Flash Memory
	Performance Metrics
	Page Fault Counts
	Hit/Miss Rate
	Write Counts

	Program behavior
	Locality of Reference
	Memory Reference Patterns
	Random Traces
	Write-most Traces
	Read-most Traces
	Zipf Traces

	Introduction
	Problem Definition
	Objectives
	Motivation

	Dissertation Organization

	LITERATURE REVIEW
	Traditional Buffer Replacement Algorithms
	OPT or MIN Page Replacement Algorithm
	LRU Based Page Replacement
	FIFO Page Replacement Algorithm
	LRU Page Replacement Algorithm
	NRU Page Replacement Algorithm
	LFU Page Replacement Algorithm
	EELRU Page Replacement Algorithm
	LRFU Page Replacement Algorithm
	LRU-K Page Replacement Algorithm
	2Q Page Replacement Algorithm
	LIRS Page Replacement Algorithm
	ARC Page Replacement Algorithm

	CLOCK Based Page Replacement Algorithm
	CLOCK Page Replacement Algorithm
	Clock-Pro
	CAR Page Replacement Algorithm
	GCLOCK Page Replacement Algorithm

	Buffer Replacement Algorithms for Flash-Based Systems
	CF-LRU
	CFDC
	LRU-WSR
	LIRS-WSR
	CCF-LRU
	AD-LRU

	RESEARCH METHODOLOGY
	Data Collection
	Development Methodology and Tools
	LIRS-WSR
	Stack Pruning Function
	Data Structure
	Algorithm
	Flowchart
	Tracing

	CCF-LRU
	Data Structure
	Flowchart
	Tracing
	Algorithm

	RESULTS, ANALYSIS AND COMPARISONS
	Testing
	Test Result of Workload 1 (Trace with Random Access)
	Test Result of Workload 2 (Trace with Read-Most Access)
	Test Result of Workload 3 (Trace with Write-Most Access)
	Test Result of Workload 4 (Zipf Trace)

	Analysis and Comparisons
	Hit Rate Analysis
	Write Count Analysis

	CONCLUSION
	Conclusion
	Limitations

	References
	Bibliography
	Appendix Sample Input Traces
	Random Input Trace
	Read-most Input Trace
	Write-most Input Trace
	Zipf Input Trace

